Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 220(7)2023 07 03.
Article in English | MEDLINE | ID: mdl-37326974

ABSTRACT

Eosinophils are typically considered tissue-damaging effector cells in type 2 immune-related diseases. However, they are also increasingly recognized as important modulators of various homeostatic processes, suggesting they retain the ability to adapt their function to different tissue contexts. In this review, we discuss recent progress in our understanding of eosinophil activities within tissues, with particular emphasis on the gastrointestinal tract, where a large population of these cells resides under non-inflammatory conditions. We further examine evidence of their transcriptional and functional heterogeneity and highlight environmental signals emerging as key regulators of their activities, beyond classical type 2 cytokines.


Subject(s)
Eosinophils , Immune System Diseases , Humans , Cytokines , Gastrointestinal Tract
2.
Nature ; 615(7950): 151-157, 2023 03.
Article in English | MEDLINE | ID: mdl-36509106

ABSTRACT

In the past decade, single-cell transcriptomics has helped to uncover new cell types and states and led to the construction of a cellular compendium of health and disease. Despite this progress, some difficult-to-sequence cells remain absent from tissue atlases. Eosinophils-elusive granulocytes that are implicated in a plethora of human pathologies1-5-are among these uncharted cell types. The heterogeneity of eosinophils and the gene programs that underpin their pleiotropic functions remain poorly understood. Here we provide a comprehensive single-cell transcriptomic profiling of mouse eosinophils. We identify an active and a basal population of intestinal eosinophils, which differ in their transcriptome, surface proteome and spatial localization. By means of a genome-wide CRISPR inhibition screen and functional assays, we reveal a mechanism by which interleukin-33 (IL-33) and interferon-γ (IFNγ) induce the accumulation of active eosinophils in the inflamed colon. Active eosinophils are endowed with bactericidal and T cell regulatory activity, and express the co-stimulatory molecules CD80 and PD-L1. Notably, active eosinophils are enriched in the lamina propria of a small cohort of patients with inflammatory bowel disease, and are closely associated with CD4+ T cells. Our findings provide insights into the biology of eosinophils and highlight the crucial contribution of this cell type to intestinal homeostasis, immune regulation and host defence. Furthermore, we lay a framework for the characterization of eosinophils in human gastrointestinal diseases.


Subject(s)
Colitis , Eosinophils , Immunity , Intestines , Animals , Humans , Mice , Colitis/immunology , Colitis/pathology , Eosinophils/classification , Eosinophils/cytology , Eosinophils/immunology , Eosinophils/metabolism , Inflammatory Bowel Diseases/immunology , Single-Cell Gene Expression Analysis , Transcriptome , Proteome , Interleukin-33 , Interferon-gamma , T-Lymphocytes , B7-1 Antigen/metabolism , Intestines/immunology , Intestines/pathology
3.
Gastroenterology ; 161(4): 1245-1256.e20, 2021 10.
Article in English | MEDLINE | ID: mdl-34146566

ABSTRACT

BACKGROUND & AIMS: Irritable bowel syndrome (IBS) and inflammatory bowel diseases result in a substantial reduction in quality of life and a considerable socioeconomic impact. In IBS, diagnosis and treatment options are limited, but evidence for involvement of the gut microbiome in disease pathophysiology is emerging. Here we analyzed the prevalence of endoscopically visible mucosal biofilms in gastrointestinal disease and associated changes in microbiome composition and metabolism. METHODS: The presence of mucosal biofilms was assessed in 1426 patients at 2 European university-based endoscopy centers. One-hundred and seventeen patients were selected for in-depth molecular and microscopic analysis using 16S ribosomal RNA gene amplicon-sequencing of colonic biopsies and fecal samples, confocal microscopy with deep learning-based image analysis, scanning electron microscopy, metabolomics, and in vitro biofilm formation assays. RESULTS: Biofilms were present in 57% of patients with IBS and 34% of patients with ulcerative colitis compared with 6% of controls (P < .001). These yellow-green adherent layers of the ileum and right-sided colon were microscopically confirmed to be dense bacterial biofilms. 16S-sequencing links the presence of biofilms to a dysbiotic gut microbiome, including overgrowth of Escherichia coli and Ruminococcus gnavus. R. gnavus isolates cultivated from patient biofilms also formed biofilms in vitro. Metabolomic analysis found an accumulation of bile acids within biofilms that correlated with fecal bile acid excretion, linking this phenotype with a mechanism of diarrhea. CONCLUSIONS: The presence of mucosal biofilms is an endoscopic feature in a subgroup of IBS and ulcerative colitis with disrupted bile acid metabolism and bacterial dysbiosis. They provide novel insight into the pathophysiology of IBS and ulcerative colitis, illustrating that biofilm can be seen as a tipping point in the development of dysbiosis and disease.


Subject(s)
Bacteria/growth & development , Biofilms/growth & development , Colitis, Ulcerative/microbiology , Colon/microbiology , Colonoscopy , Gastrointestinal Microbiome , Intestinal Mucosa/microbiology , Irritable Bowel Syndrome/microbiology , Austria , Bacteria/metabolism , Bacteria/ultrastructure , Case-Control Studies , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colon/metabolism , Colon/pathology , Deep Learning , Germany , Humans , Image Interpretation, Computer-Assisted , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Irritable Bowel Syndrome/metabolism , Irritable Bowel Syndrome/pathology , Metabolomics , Microscopy, Confocal , Microscopy, Electron, Scanning , Predictive Value of Tests , Ribotyping
SELECTION OF CITATIONS
SEARCH DETAIL
...