Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Nature ; 624(7990): 201-206, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37794193

ABSTRACT

Coronavirus spike proteins mediate receptor binding and membrane fusion, making them prime targets for neutralizing antibodies. In the cases of severe acute respiratory syndrome coronavirus, severe acute respiratory syndrome coronavirus 2 and Middle East respiratory syndrome coronavirus, spike proteins transition freely between open and closed conformations to balance host cell attachment and immune evasion1-5. Spike opening exposes domain S1B, allowing it to bind to proteinaceous receptors6,7, and is also thought to enable protein refolding during membrane fusion4,5. However, with a single exception, the pre-fusion spike proteins of all other coronaviruses studied so far have been observed exclusively in the closed state. This raises the possibility of regulation, with spike proteins more commonly transitioning to open states in response to specific cues, rather than spontaneously. Here, using cryogenic electron microscopy and molecular dynamics simulations, we show that the spike protein of the common cold human coronavirus HKU1 undergoes local and long-range conformational changes after binding a sialoglycan-based primary receptor to domain S1A. This binding triggers the transition of S1B domains to the open state through allosteric interdomain crosstalk. Our findings provide detailed insight into coronavirus attachment, with possibilities of dual receptor usage and priming of entry as a means of immune escape.


Subject(s)
Betacoronavirus , Polysaccharides , Sialic Acids , Spike Glycoprotein, Coronavirus , Humans , Allosteric Regulation , Betacoronavirus/chemistry , Betacoronavirus/ultrastructure , Common Cold/virology , Cryoelectron Microscopy , Molecular Dynamics Simulation , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Binding , Protein Conformation , Sialic Acids/chemistry , Sialic Acids/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/ultrastructure , Immune Evasion
2.
Biochemistry ; 62(5): 1032-1043, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36808948

ABSTRACT

Accelerated spontaneous deamidation of asparagine 373 and subsequent conversion into an isoaspartate has been shown to attenuate the binding of histo blood group antigens (HBGAs) to the protruding domain (P-domain) of the capsid protein of a prevalent norovirus strain (GII.4). Here, we link an unusual backbone conformation of asparagine 373 to its fast site-specific deamidation. NMR spectroscopy and ion exchange chromatography have been used to monitor the deamidation reaction of P-domains of two closely related GII.4 norovirus strains, specific point mutants, and control peptides. MD simulations over several microseconds have been instrumental to rationalize the experimental findings. While conventional descriptors such as available surface area, root-mean-square fluctuations, or nucleophilic attack distance fail as explanations, the population of a rare syn-backbone conformation distinguishes asparagine 373 from all other asparagine residues. We suggest that stabilization of this unusual conformation enhances the nucleophilicity of the backbone nitrogen of aspartate 374, in turn accelerating the deamidation of asparagine 373. This finding should be relevant to the development of reliable prediction algorithms for sites of rapid asparagine deamidation in proteins.


Subject(s)
Capsid Proteins , Norovirus , Capsid Proteins/chemistry , Binding Sites , Asparagine/metabolism , Norovirus/genetics , Protein Domains , Protein Binding
3.
Chemistry ; 28(71): e202202614, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36161798

ABSTRACT

We have used NMR experiments to explore the binding of selected glycans and glycomimetics to the SARS CoV-2 spike glycoprotein (S-protein) and to its receptor binding domain (RBD). STD NMR experiments confirm the binding of sialoglycans to the S-protein of the prototypic Wuhan strain virus and yield dissociation constants in the millimolar range. The absence of STD effects for sialoglycans in the presence of the Omicron/BA.1 S-protein reflects a loss of binding as a result of S-protein evolution. Likewise, no STD effects are observed for the deletion mutant Δ143-145 of the Wuhan S-protein, thus supporting localization of the binding site in the N-terminal domain (NTD). The glycomimetics Oseltamivir and Zanamivir bind weakly to the S-protein of both virus strains. Binding of blood group antigens to the Wuhan S-protein cannot be confirmed by STD NMR. Using 1 H,15 N TROSY HSQC-based chemical shift perturbation (CSP) experiments, we excluded binding of any of the ligands studied to the RBD of the Wuhan S-protein. Our results put reported data on glycan binding into perspective and shed new light on the potential role of glycan-binding to the S-protein.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Humans , Spike Glycoprotein, Coronavirus , Binding Sites , Polysaccharides , Magnetic Resonance Spectroscopy , Protein Binding
4.
J Am Chem Soc ; 144(29): 13060-13065, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35830336

ABSTRACT

We have used chemical shift perturbation (CSP) and saturation transfer difference (STD) NMR experiments to identify and characterize the binding of selected ligands to the receptor-binding domain (RBD) of the spike glycoprotein (S-protein) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We also subjected full-length S-protein to STD NMR experiments, allowing correlations with RBD-based results. CSPs reveal the binding sites for heparin and fondaparinux, and affinities were measured using CSP titrations. We then show that α-2,3-sialyllactose binds to the S-protein but not to the RBD. Finally, combined CSP and STD NMR experiments show that lifitegrast, a compound used for the treatment of dry eye, binds to the linoleic acid (LA) binding pocket with a dissociation constant in the µM range. This is an interesting finding, as lifitegrast lends itself well as a blueprint for medicinal chemistry, eventually furnishing novel entry inhibitors targeting the highly conserved LA binding site.


Subject(s)
COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Binding Sites , Humans , Ligands , Magnetic Resonance Spectroscopy , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
5.
Commun Biol ; 5(1): 563, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35680964

ABSTRACT

Norovirus capsids are icosahedral particles composed of 90 dimers of the major capsid protein VP1. The C-terminus of the VP1 proteins forms a protruding (P)-domain, mediating receptor attachment, and providing a target for neutralizing antibodies. NMR and native mass spectrometry directly detect P-domain monomers in solution for murine (MNV) but not for human norovirus (HuNoV). We report that the binding of glycochenodeoxycholic acid (GCDCA) stabilizes MNV-1 P-domain dimers (P-dimers) and induces long-range NMR chemical shift perturbations (CSPs) within loops involved in antibody and receptor binding, likely reflecting corresponding conformational changes. Global line shape analysis of monomer and dimer cross-peaks in concentration-dependent methyl TROSY NMR spectra yields a dissociation rate constant koff of about 1 s-1 for MNV-1 P-dimers. For structurally closely related HuNoV GII.4 Saga P-dimers a value of about 10-6 s-1 is obtained from ion-exchange chromatography, suggesting essential differences in the role of GCDCA as a cofactor for MNV and HuNoV infection.


Subject(s)
Caliciviridae Infections , Norovirus , Animals , Capsid/metabolism , Capsid Proteins/metabolism , Host Microbial Interactions , Humans , Mice , Norovirus/chemistry , Norovirus/metabolism
6.
J Biomol NMR ; 76(3): 59-74, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35397749

ABSTRACT

NMR spectroscopy allows the study of biomolecules in close-to-native conditions. Structural information can be inferred from the NMR spectra when an assignment is available. Protein assignment is usually a time-consuming task, being specially challenging in the case of large, supramolecular systems. Here, we present an extension of existing state-of-the-art strategies for methyl group assignment that partially overcomes signal overlapping and other difficulties associated to isolated methyl groups. Our approach exploits the ability of proteins to populate two or more conformational states, allowing for unique NOE restraints in each protein conformer. The method is compatible with automated assignment algorithms, granting assignments beyond the limits of a single protein state. The approach also benefits from long-range structural restraints obtained from metal-induced pseudocontact shifts (PCS) and paramagnetic relaxation enhancements (PREs). We illustrate the method with the complete assignment of the 199 methyl groups of a MILproSVproSAT methyl-labeled sample of the UDP-glucose pyrophosphorylase enzyme from Leishmania major (LmUGP). Protozoan parasites of the genus Leishmania causes Leishmaniasis, a neglected disease affecting over 12 million people worldwide. LmUGP is responsible for the de novo biosynthesis of uridine diphosphate-glucose, a precursor in the biosynthesis of the dense surface glycocalyx involved in parasite survival and infectivity. NMR experiments with LmUGP and related enzymes have the potential to unravel new insights in the host resistance mechanisms used by Leishmania major. Our efforts will help in the development of selective and efficient drugs against Leishmania.


Subject(s)
Glucose , Proteins , Humans , Ions , Ligands , Magnetic Resonance Spectroscopy/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry
7.
Biomol NMR Assign ; 16(1): 97-107, 2022 04.
Article in English | MEDLINE | ID: mdl-35050443

ABSTRACT

The protruding domain (P-domain) of the murine norovirus (MNV) capsid protein VP1 is essential for infection. It mediates receptor binding and attachment of neutralizing antibodies. Protein NMR studies into interactions of the P-domain with ligands will yield insights not easily available from other biophysical techniques and will extend our understanding of MNV attachment to host cells. Such studies require at least partial NMR assignments. Here, we describe the assignment of about 70% of the Ala, Ile, LeuproS, Met, and ValproS methyl groups. An unfavorable distribution of methyl group resonance signals prevents complete assignment based exclusively on 4D HMQC-NOESY-HMQC experiments, yielding assignment of only 55 out of 100 methyl groups. Therefore, we created point mutants and measured pseudo contact shifts, extending and validating assignments based on methyl-methyl NOEs. Of note, the P-domains are present in two different forms caused by an approximate equal distribution of trans- and cis-configured proline residues in position 361.


Subject(s)
Norovirus , Animals , Capsid Proteins/metabolism , Mice , Mutagenesis, Site-Directed , Norovirus/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Binding
8.
Biochem Soc Trans ; 50(1): 347-359, 2022 02 28.
Article in English | MEDLINE | ID: mdl-34940787

ABSTRACT

Infection with human noroviruses requires attachment to histo blood group antigens (HBGAs) via the major capsid protein VP1 as a primary step. Several crystal structures of VP1 protruding domain dimers, so called P-dimers, complexed with different HBGAs have been solved to atomic resolution. Corresponding binding affinities have been determined for HBGAs and other glycans exploiting different biophysical techniques, with mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy being most widely used. However, reported binding affinities are inconsistent. At the extreme, for the same system MS detects binding whereas NMR spectroscopy does not, suggesting a fundamental source of error. In this short essay, we will explain the reason for the observed differences and compile reliable and reproducible binding affinities. We will then highlight how a combination of MS techniques and NMR experiments affords unique insights into the process of HBGA binding by norovirus capsid proteins.


Subject(s)
Blood Group Antigens , Norovirus , Binding Sites , Blood Group Antigens/chemistry , Blood Group Antigens/metabolism , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Humans , Norovirus/chemistry , Norovirus/metabolism , Polysaccharides/metabolism , Protein Binding
9.
Life (Basel) ; 11(6)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208397

ABSTRACT

Infection by the humannoroviruses (hNoV), for the vast majority of strains, requires attachment of the viral capsid to histo blood group antigens (HBGAs). The HBGA-binding pocket is formed by dimers of the protruding domain (P dimers) of the capsid protein VP1. Several studies have focused on HBGA binding to P dimers, reporting binding affinities and stoichiometries. However, nuclear magnetic resonance spectroscopy (NMR) and native mass spectrometry (MS) analyses yielded incongruent dissociation constants (KD) for the binding of HBGAs to P dimers and, in some cases, disagreed on whether glycans bind at all. We hypothesized that glycan clustering during electrospray ionization in native MS critically depends on the physicochemical properties of the protein studied. It follows that the choice of a reference protein is crucial. We analysed carbohydrate clustering using various P dimers and eight non-glycan binding proteins serving as possible references. Data from native and ion mobility MS indicate that the mass fraction of ß-sheets has a strong influence on the degree of glycan clustering. Therefore, the determination of specific glycan binding affinities from native MS must be interpreted cautiously.

10.
Viruses ; 13(3)2021 03 05.
Article in English | MEDLINE | ID: mdl-33807801

ABSTRACT

Glycan-protein interactions are highly specific yet transient, rendering glycans ideal recognition signals in a variety of biological processes. In human norovirus (HuNoV) infection, histo-blood group antigens (HBGAs) play an essential but poorly understood role. For murine norovirus infection (MNV), sialylated glycolipids or glycoproteins appear to be important. It has also been suggested that HuNoV capsid proteins bind to sialylated ganglioside head groups. Here, we study the binding of HBGAs and sialoglycans to HuNoV and MNV capsid proteins using NMR experiments. Surprisingly, the experiments show that none of the norovirus P-domains bind to sialoglycans. Notably, MNV P-domains do not bind to any of the glycans studied, and MNV-1 infection of cells deficient in surface sialoglycans shows no significant difference compared to cells expressing respective glycans. These findings redefine glycan recognition by noroviruses, challenging present models of infection.


Subject(s)
Blood Group Antigens/immunology , Caliciviridae Infections , Capsid Proteins/immunology , Norovirus/immunology , Polysaccharides , Animals , Binding Sites , Caliciviridae Infections/immunology , Caliciviridae Infections/virology , Humans , Mice , Models, Molecular , Protein Binding , Virus Attachment
11.
Molecules ; 26(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917179

ABSTRACT

Noroviruses are the major cause of viral gastroenteritis and re-emerge worldwide every year, with GII.4 currently being the most frequent human genotype. The norovirus capsid protein VP1 is essential for host immune response. The P domain mediates cell attachment via histo blood-group antigens (HBGAs) in a strain-dependent manner but how these glycan-interactions actually relate to cell entry remains unclear. Here, hydrogen/deuterium exchange mass spectrometry (HDX-MS) is used to investigate glycan-induced protein dynamics in P dimers of different strains, which exhibit high structural similarity but different prevalence in humans. While the almost identical strains GII.4 Saga and GII.4 MI001 share glycan-induced dynamics, the dynamics differ in the emerging GII.17 Kawasaki 308 and rare GII.10 Vietnam 026 strain. The structural aspects of glycan binding to fully deamidated GII.4 P dimers have been investigated before. However, considering the high specificity and half-life of N373D under physiological conditions, large fractions of partially deamidated virions with potentially altered dynamics in their P domains are likely to occur. Therefore, we also examined glycan binding to partially deamidated GII.4 Saga and GII.4 MI001 P dimers. Such mixed species exhibit increased exposure to solvent in the P dimer upon glycan binding as opposed to pure wildtype. Furthermore, deamidated P dimers display increased flexibility and a monomeric subpopulation. Our results indicate that glycan binding induces strain-dependent structural dynamics, which are further altered by N373 deamidation, and hence hint at a complex role of deamidation in modulating glycan-mediated cell attachment in GII.4 strains.


Subject(s)
Capsid Proteins/chemistry , Molecular Dynamics Simulation , Polysaccharides/chemistry , Protein Interaction Domains and Motifs , Protein Multimerization , Amino Acids , Binding Sites , Humans , Norovirus , Protein Binding , Protein Conformation
12.
Biomol NMR Assign ; 14(1): 123-130, 2020 04.
Article in English | MEDLINE | ID: mdl-31993958

ABSTRACT

Attachment of human noroviruses to histo blood group antigens (HBGAs) is thought to be essential for infection, although how this binding event promotes infection is unknown. Recent studies have shown that 60% of all GII.4 epidemic strains may undergo a spontaneous post-translational modification (PTM) in an amino acid located adjacent to the binding pocket for HBGAs. This transformation proceeds with an estimated half-life of 1-2 days under physiological conditions, dramatically affecting HBGA recognition. The surface-exposed position of this PTM and its sequence conservation suggests a relevant role in immune escape and host-cell recognition. As a first step towards the understanding of the biological implications of this PTM at atomic resolution, we report the complete assignment of methyl resonances of a MILProSVProSA methyl-labeled sample of a 72 kDa protruding domain from a GII.4 Saga human norovirus strain. Assignments were obtained from methyl-methyl NOESY experiments combined with site-directed mutagenesis and automated assignment. This data provides the basis for a detailed characterization of the PTM-driven modulation of immune recognition in human norovirus on a molecular level.


Subject(s)
Amino Acids/chemistry , Norovirus/metabolism , Nuclear Magnetic Resonance, Biomolecular , Viral Proteins/chemistry , Crystallography, X-Ray , Humans , Mutagenesis, Site-Directed , Protein Domains , Protein Multimerization
13.
Chembiochem ; 21(7): 1007-1021, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31644826

ABSTRACT

Bile acids have been reported as important cofactors promoting human and murine norovirus (NoV) infections in cell culture. The underlying mechanisms are not resolved. Through the use of chemical shift perturbation (CSP) NMR experiments, we identified a low-affinity bile acid binding site of a human GII.4 NoV strain. Long-timescale MD simulations reveal the formation of a ligand-accessible binding pocket of flexible shape, allowing the formation of stable viral coat protein-bile acid complexes in agreement with experimental CSP data. CSP NMR experiments also show that this mode of bile acid binding has a minor influence on the binding of histo-blood group antigens and vice versa. STD NMR experiments probing the binding of bile acids to virus-like particles of seven different strains suggest that low-affinity bile acid binding is a common feature of human NoV and should therefore be important for understanding the role of bile acids as cofactors in NoV infection.


Subject(s)
Bile Acids and Salts/metabolism , Capsid Proteins/metabolism , Norovirus/metabolism , Animals , Bile Acids and Salts/chemistry , Binding Sites , Caliciviridae Infections/pathology , Caliciviridae Infections/virology , Capsid Proteins/chemistry , Dimerization , Humans , Ligands , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Structure, Tertiary
14.
Nat Commun ; 10(1): 1320, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30899001

ABSTRACT

Attachment of human noroviruses to histo blood group antigens (HBGAs) is essential for infection, but how this binding event promotes the infection of host cells is unknown. Here, we employ protein NMR experiments supported by mass spectrometry and crystallography to study HBGA binding to the P-domain of a prevalent virus strain (GII.4). We report a highly selective transformation of asparagine 373, located in an antigenic loop adjoining the HBGA binding site, into an iso-aspartate residue. This spontaneous post-translational modification (PTM) proceeds with an estimated half-life of a few days at physiological temperatures, independent of the presence of HBGAs but dramatically affecting HBGA recognition. Sequence conservation and the surface-exposed position of this PTM suggest an important role in infection and immune recognition for many norovirus strains.


Subject(s)
Asparagine/chemistry , Blood Group Antigens/metabolism , Capsid Proteins/chemistry , Isoaspartic Acid/chemistry , Norovirus/metabolism , Polysaccharides/chemistry , Protein Processing, Post-Translational , Asparagine/genetics , Asparagine/metabolism , Binding Sites , Blood Group Antigens/chemistry , Blood Group Antigens/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Host-Pathogen Interactions , Humans , Isoaspartic Acid/genetics , Isoaspartic Acid/metabolism , Kinetics , Models, Molecular , Norovirus/genetics , Polysaccharides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
15.
Biomacromolecules ; 19(9): 3714-3724, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30071731

ABSTRACT

Norovirus infection is the major cause of nonbacterial gastroenteritis in humans and has been the subject of numerous studies investigating the virus's biophysical properties and biochemical function with the aim of deriving novel and highly potent entry inhibitors to prevent infection. Recently, it has been shown that the protruding P domain dimer (P-dimer) of a GII.10 Norovirus strain exhibits two new binding sites for l-fucose in addition to the canonical binding sites. Thus, these sites provide a novel target for the design of multivalent fucose ligands as entry inhibitors of norovirus infections. In this current study, a first generation of multivalent fucose-functionalized glycomacromolecules was synthesized and applied as model structures to investigate the potential targeting of fucose binding sites in human norovirus P-dimer. Following previously established solid phase polymer synthesis, eight precision glycomacromolecules varying in number and position of fucose ligands along an oligo(amidoamine) backbone were obtained and then used in a series of binding studies applying native MS, NMR, and X-ray crystallography. We observed only one fucose per glycomacromolecule binding to one P-dimer resulting in similar binding affinities for all fucose-functionalized glycomacromolecules, which based on our current findings we attribute to the overall size of macromolecular ligands and possibly to steric hindrance.


Subject(s)
Antiviral Agents/chemical synthesis , Capsid Proteins/metabolism , Fucose/chemistry , Norovirus/drug effects , Antiviral Agents/pharmacology , Capsid Proteins/chemistry , Ligands , Molecular Docking Simulation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL