Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant Pathol ; 19(2): 313-327, 2018 02.
Article in English | MEDLINE | ID: mdl-27925401

ABSTRACT

Soft-rot diseases of plants attributed to Dickeya dadantii result from lysis of the plant cell wall caused by pectic enzymes released by the bacterial cell by a type II secretion system (T2SS). Arabidopsis thaliana can express several lines of defence against this bacterium. We employed bacterial mutants with defective envelope structures or secreted proteins to examine early plant defence reactions. We focused on the production of AtrbohD-dependent reactive oxygen species (ROS), callose deposition and cell death as indicators of these reactions. We observed a significant reduction in ROS and callose formation with a bacterial mutant in which genes encoding five pectate lyases (Pels) were disrupted. Treatment of plant leaves with bacterial culture filtrates containing Pels resulted in ROS and callose production, and both reactions were dependent on a functional AtrbohD gene. ROS and callose were produced in response to treatment with a cellular fraction of a T2SS-negative mutant grown in a Pels-inducing medium. Finally, ROS and callose were produced in leaves treated with purified Pels that had also been shown to induce the expression of jasmonic acid-dependent defence genes. Pel catalytic activity is required for the induction of ROS accumulation. In contrast, cell death observed in leaves infected with the wild-type strain appeared to be independent of a functional AtrbohD gene. It was also independent of the bacterial production of pectic enzymes and the type III secretion system (T3SS). In conclusion, the work presented here shows that D. dadantii is recognized by the A. thaliana innate immune system through the action of pectic enzymes secreted by bacteria at the site of infection. This recognition leads to AtrbohD-dependent ROS and callose accumulation, but not cell death.


Subject(s)
Arabidopsis/immunology , Gammaproteobacteria/enzymology , Polysaccharide-Lyases/metabolism , Arabidopsis/metabolism , Arabidopsis/microbiology , Glucans/metabolism , Immunity, Innate/genetics , Immunity, Innate/physiology , Oligosaccharides/metabolism , Polysaccharide-Lyases/genetics , Reactive Oxygen Species/metabolism , Type III Secretion Systems/metabolism , Virulence/genetics , Virulence/physiology
2.
PLoS One ; 8(11): e79707, 2013.
Article in English | MEDLINE | ID: mdl-24244547

ABSTRACT

In Archaea, the proteins involved in the genetic information processing pathways, including DNA replication, transcription, and translation, share strong similarities with those of eukaryotes. Characterizations of components of the eukaryotic-type replication machinery complex provided many interesting insights into DNA replication in both domains. In contrast, DNA repair processes of hyperthermophilic archaea are less well understood and very little is known about the intertwining between DNA synthesis, repair and recombination pathways. The development of genetic system in hyperthermophilic archaea is still at a modest stage hampering the use of complementary approaches of reverse genetics and biochemistry to elucidate the function of new candidate DNA repair gene. To gain insights into genomic maintenance processes in hyperthermophilic archaea, a protein-interaction network centred on informational processes of Pyrococcus abyssi was generated by affinity purification coupled with mass spectrometry. The network consists of 132 interactions linking 87 proteins. These interactions give insights into the connections of DNA replication with recombination and repair, leading to the discovery of new archaeal components and of associations between eucaryotic homologs. Although this approach did not allow us to clearly delineate new DNA pathways, it provided numerous clues towards the function of new molecular complexes with the potential to better understand genomic maintenance processes in hyperthermophilic archaea. Among others, we found new potential partners of the replication clamp and demonstrated that the single strand DNA binding protein, Replication Protein A, enhances the transcription rate, in vitro, of RNA polymerase. This interaction map provides a valuable tool to explore new aspects of genome integrity in Archaea and also potentially in Eucaryotes.


Subject(s)
Genomics , Pyrococcus abyssi/genetics , Carrier Proteins , DNA Replication , Protein Binding , Protein Interaction Mapping , Protein Interaction Maps , Proteome , Proteomics , Pyrococcus abyssi/metabolism , Recombination, Genetic , Transcription, Genetic
3.
J Biol Chem ; 287(19): 15648-60, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22431731

ABSTRACT

Pyrococcus abyssi NucS is the founding member of a new family of structure-specific DNA endonucleases that interact with the replication clamp proliferating cell nuclear antigen (PCNA). Using a combination of small angle x-ray scattering and surface plasmon resonance analyses, we demonstrate the formation of a stable complex in solution, in which one molecule of the PabNucS homodimer binds to the outside surface of the PabPCNA homotrimer. Using fluorescent labels, PCNA is shown to increase the binding affinity of NucS toward single-strand/double-strand junctions on 5' and 3' flaps, as well as to modulate the cleavage specificity on the branched DNA structures. Our results indicate that the presence of a single major contact between the PabNucS and PabPCNA proteins, together with the complex-induced DNA bending, facilitate conformational flexibility required for specific cleavage at the single-strand/double-strand DNA junction.


Subject(s)
Archaeal Proteins/chemistry , Endonucleases/chemistry , Proliferating Cell Nuclear Antigen/chemistry , Pyrococcus abyssi/enzymology , Algorithms , Amino Acid Sequence , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Binding, Competitive , DNA Replication/genetics , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Archaeal/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Endonucleases/genetics , Endonucleases/metabolism , Kinetics , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Protein Binding , Protein Structure, Tertiary , Pyrococcus abyssi/genetics , Pyrococcus abyssi/metabolism , Scattering, Small Angle , Surface Plasmon Resonance , X-Ray Diffraction
4.
Biochem Soc Trans ; 39(1): 145-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21265762

ABSTRACT

Branched DNA structures that occur during DNA repair and recombination must be efficiently processed by structure-specific endonucleases in order to avoid cell death. In the present paper, we summarize our screen for new interaction partners for the archaeal replication clamp that led to the functional characterization of a novel endonuclease family, dubbed NucS. Structural analyses of Pyrococcus abyssi NucS revealed an unexpected binding site for ssDNA (single-stranded DNA) that directs, together with the replication clamp, the nuclease activity of this protein towards ssDNA-dsDNA (double-stranded DNA) junctions. Our studies suggest that understanding the detailed architecture and dynamic behaviour of the NucS (nuclease specific for ssDNA)-PCNA (proliferating-cell nuclear antigen) complex with DNA will be crucial for identification of its physiologically relevant activities.


Subject(s)
DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Endodeoxyribonucleases/metabolism , Nucleic Acid Conformation , Amino Acid Sequence , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , DNA Replication , Endodeoxyribonucleases/chemistry , Humans , Models, Molecular , Molecular Sequence Data , Proliferating Cell Nuclear Antigen/metabolism , Protein Conformation , Pyrococcus abyssi/genetics , Pyrococcus abyssi/metabolism , Ribonucleases/chemistry , Ribonucleases/metabolism , Sequence Alignment
5.
J Biol Chem ; 283(26): 18260-8, 2008 Jun 27.
Article in English | MEDLINE | ID: mdl-18430740

ABSTRACT

The crystallographic structure of the family 3 polysaccharide lyase (PL-3) PelI from Erwinia chrysanthemi has been solved to 1.45 A resolution. It consists of an N-terminal domain harboring a fibronectin type III fold linked to a catalytic domain displaying a parallel beta-helix topology. The N-terminal domain is located away from the active site and is not involved in the catalytic process. After secretion in planta, the two domains are separated by E. chrysanthemi proteases. This event turns on the hypersensitive response of the host. The structure of the single catalytic domain determined to 2.1 A resolution shows that the domain separation unveils a "Velcro"-like motif of asparagines, which might be recognized by a plant receptor. The structure of PelI in complex with its substrate, a tetragalacturonate, has been solved to 2.3 A resolution. The sugar binds from subsites -2 to +2 in one monomer of the asymmetric unit, although it lies on subsites -1 to +3 in the other. These two "Michaelis complexes" have never been observed simultaneously before and are consistent with the dual mode of bond cleavage in this substrate. The bound sugar adopts a mixed 2(1) and 3(1) helical conformation similar to that reported in inactive mutants from families PL-1 and PL-10. However, our study suggests that the catalytic base in PelI is not a conventional arginine but a lysine as proposed in family PL-9.


Subject(s)
Crystallography, X-Ray/methods , Dickeya chrysanthemi/metabolism , Gene Expression Regulation , Polysaccharide-Lyases/chemistry , Amino Acid Sequence , Arginine/chemistry , Binding Sites , Catalysis , Catalytic Domain , Kinetics , Lysine/chemistry , Models, Molecular , Molecular Sequence Data , Protein Folding , Protein Structure, Tertiary
6.
Acta Crystallogr D Biol Crystallogr ; 63(Pt 6): 682-8, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17505106

ABSTRACT

A parallel 5'-d(TGGGGT)-3' quadruplex was formed in Na(+) solution and crystallized using lithium sulfate as the main precipitating agent. The X-ray structure was determined to 1.5 A resolution in space group P2(1) by molecular replacement. The asymmetric unit consists of a characteristic motif of two quadruplexes stacked at their 5' ends. All nucleotides are clearly defined in the density and could be positioned. A single bound Li(+) ion is observed at the surface of the column formed by the two joined molecules. Thus, this small alkali metal ion appears to be unsuitable as a replacement for the Na(+) ion in the central channel of G-quartets, unlike K(+) or Tl(+) ions. A well conserved constellation of water molecules is observed in the grooves of the dimeric structure.


Subject(s)
Deoxyribonucleotides/chemistry , Base Sequence , Crystallization , Crystallography, X-Ray , Deoxyribonucleotides/genetics , Lithium/chemistry , Models, Molecular , Nucleic Acid Conformation , Sodium/chemistry , Static Electricity , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...