Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38783705

ABSTRACT

Tumor mutational signatures have gained prominence in cancer research, yet the lack of standardized methods hinders reproducibility and robustness. Leveraging colorectal cancer (CRC) as a model, we explored the influence of computational parameters on mutational signature analyses across 230 CRC cell lines and 152 CRC patients. Results were validated in three independent datasets: 483 endometrial cancer patients stratified by mismatch repair (MMR) status, 35 lung cancer patients by smoking status and 12 patient-derived organoids (PDOs) annotated for colibactin exposure. Assessing various bioinformatic tools, reference datasets and input data sizes including whole genome sequencing, whole exome sequencing and a pan-cancer gene panel, we demonstrated significant variability in the results. We report that the use of distinct algorithms and references led to statistically different results, highlighting how arbitrary choices may induce variability in the mutational signature contributions. Furthermore, we found a differential contribution of mutational signatures between coding and intergenic regions and defined the minimum number of somatic variants required for reliable mutational signature assignment. To facilitate the identification of the most suitable workflows, we developed Comparative Mutational Signature analysis on Coding and Extragenic Regions (CoMSCER), a bioinformatic tool which allows researchers to easily perform comparative mutational signature analysis by coupling the results from several tools and public reference datasets and to assess mutational signature contributions in coding and non-coding genomic regions. In conclusion, our study provides a comparative framework to elucidate the impact of distinct computational workflows on mutational signatures.


Subject(s)
Colorectal Neoplasms , Computational Biology , Mutation , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Computational Biology/methods , Workflow , Cell Line, Tumor , Exome Sequencing/methods , Female , Algorithms
2.
Mol Oncol ; 18(6): 1460-1485, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38468448

ABSTRACT

Multiple strategies are continuously being explored to expand the drug target repertoire in solid tumors. We devised a novel computational workflow for transcriptome-wide gene expression outlier analysis that allows the systematic identification of both overexpression and underexpression events in cancer cells. Here, it was applied to expression values obtained through RNA sequencing in 226 colorectal cancer (CRC) cell lines that were also characterized by whole-exome sequencing and microarray-based DNA methylation profiling. We found cell models displaying an abnormally high or low expression level for 3533 and 965 genes, respectively. Gene expression abnormalities that have been previously associated with clinically relevant features of CRC cell lines were confirmed. Moreover, by integrating multi-omics data, we identified both genetic and epigenetic alternations underlying outlier expression values. Importantly, our atlas of CRC gene expression outliers can guide the discovery of novel drug targets and biomarkers. As a proof of concept, we found that CRC cell lines lacking expression of the MTAP gene are sensitive to treatment with a PRMT5-MTA inhibitor (MRTX1719). Finally, other tumor types may also benefit from this approach.


Subject(s)
Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Transcriptome , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Transcriptome/genetics , Gene Expression Profiling , DNA Methylation/genetics
4.
Clin Cancer Res ; 29(22): 4530-4539, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37436743

ABSTRACT

In the evolving molecular treatment landscape of metastatic colorectal cancer (mCRC), the identification of druggable alterations is pivotal to achieve the best therapeutic opportunity for each patient. Because the number of actionable targets is expanding, there is the need to timely detect their presence or emergence to guide the choice of different available treatment options. Liquid biopsy, through the analysis of circulating tumor DNA (ctDNA), has proven safe and effective as a complementary method to address cancer evolution while overcoming the limitations of tissue biopsy. Even though data are accumulating regarding the potential for ctDNA-guided treatments applied to targeted agents, still major gaps in knowledge exist as for their application to different areas of the continuum of care. In this review, we recapitulate how ctDNA information could be exploited to drive different targeted treatment strategies in mCRC patients, by refining molecular selection before treatment by addressing tumor heterogeneity beyond tumor tissue biopsy; longitudinally monitoring early-tumor response and resistance mechanisms to targeted agents, potentially leading to tailored, molecular-driven, therapeutic options; guiding the molecular triage towards rechallenge strategies with anti-EGFR agents, suggesting the best time for retreatment; and providing opportunities for an "enhanced rechallenge" through additional treatments or combos aimed at overcoming acquired resistance. Besides, we discuss future perspectives concerning the potential role of ctDNA to fine-tune investigational strategies such as immuno-oncology.


Subject(s)
Antineoplastic Agents , Circulating Tumor DNA , Colonic Neoplasms , Colorectal Neoplasms , Rectal Neoplasms , Humans , Circulating Tumor DNA/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colonic Neoplasms/drug therapy , Rectal Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Biomarkers, Tumor/therapeutic use
5.
Cell Rep ; 42(8): 112816, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37505981

ABSTRACT

Glioblastoma (GBM) is known as an intractable, highly heterogeneous tumor encompassing multiple subclones, each supported by a distinct glioblastoma stem cell (GSC). The contribution of GSC genetic and transcriptional heterogeneity to tumor subclonal properties is debated. In this study, we describe the systematic derivation, propagation, and characterization of multiple distinct GSCs from single, treatment-naive GBMs (GSC families). The tumorigenic potential of each GSC better correlates with its transcriptional profile than its genetic make-up, with classical GSCs being inherently more aggressive and mesenchymal more dependent on exogenous growth factors across multiple GBMs. These GSCs can segregate and recapitulate different histopathological aspects of the same GBM, as shown in a paradigmatic tumor with two histopathologically distinct components, including a conventional GBM and a more aggressive primitive neuronal component. This study provides a resource for investigating how GSCs with distinct genetic and/or phenotypic features contribute to individual GBM heterogeneity and malignant escalation.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Brain Neoplasms/metabolism , Gene Amplification , Neoplastic Stem Cells/metabolism , Carcinogenesis/pathology , Cell Line, Tumor
6.
Front Oncol ; 13: 1130852, 2023.
Article in English | MEDLINE | ID: mdl-36816936

ABSTRACT

High-grade mucinous colorectal cancer (HGM CRC) is particularly aggressive, prone to metastasis and treatment resistance, frequently accompanied by "signet ring" cancer cells. A sizeable fraction of HGM CRCs (20-40%) arises in the context of the Lynch Syndrome, an autosomal hereditary syndrome that predisposes to microsatellite instable (MSI) CRC. Development of patient-derived preclinical models for this challenging subtype of colorectal cancer represents an unmet need in oncology. We describe here successful propagation of preclinical models from a case of early-onset, MSI-positive metastatic colorectal cancer in a male Lynch syndrome patient, refractory to standard care (FOLFOX6, FOLFIRI-Panitumumab) and, surprisingly, also to immunotherapy. Surgical material from a debulking operation was implanted in NOD/SCID mice, successfully yielding one patient-derived xenograft (PDX). PDX explants were subsequently used to generate 2D and 3D cell cultures. Histologically, all models resembled the tumor of origin, displaying a high-grade mucinous phenotype with signet ring cells. For preclinical exploration of alternative treatments, in light of recent findings, we considered inhibition of the proteasome by bortezomib and of the related NEDD8 pathway by pevonedistat. Indeed, sensitivity to bortezomib was observed in mucinous adenocarcinoma of the lung, and we previously found that HGM CRC is preferentially sensitive to pevonedistat in models with low or absent expression of cadherin 17 (CDH17), a differentiation marker. We therefore performed IHC on the tumor and models, and observed no CDH17 expression, suggesting sensitivity to pevonedistat. Both bortezomib and pevonedistat showed strong activity on 2D cells at 72 hours and on 3D organoids at 7 days, thus providing valid options for in vivo testing. Accordingly, three PDX cohorts were treated for four weeks, respectively with vehicle, bortezomib and pevonedistat. Both drugs significantly reduced tumor growth, as compared to the vehicle group. Interestingly, while bortezomib was more effective in vitro, pevonedistat was more effective in vivo. Drug efficacy was further substantiated by a reduction of cellularity and of Ki67-positive cells in the treated tumors. These results highlight proteasome and NEDD8 inhibition as potentially effective therapeutic approaches against Lynch syndrome-associated HGM CRC, also when the disease is refractory to all available treatment options.

7.
Clin Cancer Res ; 29(7): 1252-1266, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36648487

ABSTRACT

PURPOSE: Current glioma diagnostic guidelines call for molecular profiling to stratify patients into prognostic and treatment subgroups. In case the tumor tissue is inaccessible, cerebrospinal fluid (CSF) has been proposed as a reliable tumor DNA source for liquid biopsy. We prospectively investigated the use of CSF for molecular characterization of newly diagnosed gliomas. EXPERIMENTAL DESIGN: We recruited two cohorts of newly diagnosed patients with glioma, one (n = 45) providing CSF collected in proximity of the tumor, the other (n = 39) CSF collected by lumbar puncture (LP). Both cohorts provided tumor tissues by surgery concomitant with CSF sampling. DNA samples retrieved from CSF and matched tumors were systematically characterized and compared by comprehensive (NGS, next-generation sequencing) or targeted (ddPCR, droplet digital PCR) methodologies. Conventional and molecular diagnosis outcomes were compared. RESULTS: We report that tumor DNA is abundant in CSF close to the tumor, but scanty and mostly below NGS sensitivity threshold in CSF from LP. Indeed, tumor DNA is mostly released by cells invading liquoral spaces, generating a gradient that attenuates by departing from the tumor. Nevertheless, in >60% of LP CSF samples, tumor DNA is sufficient to assess a selected panel of genetic alterations (IDH and TERT promoter mutations, EGFR amplification, CDKN2A/B deletion: ITEC protocol) and MGMT methylation that, combined with imaging, enable tissue-agnostic identification of main glioma molecular subtypes. CONCLUSIONS: This study shows potentialities and limitations of CSF liquid biopsy in achieving molecular characterization of gliomas at first clinical presentation and proposes a protocol to maximize diagnostic information retrievable from CSF DNA.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/diagnosis , Glioma/genetics , Glioma/pathology , Mutation , Prognosis , Liquid Biopsy , DNA, Neoplasm , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Biomarkers, Tumor/genetics
8.
Front Oncol ; 12: 844250, 2022.
Article in English | MEDLINE | ID: mdl-36110934

ABSTRACT

Background: Advanced and unresectable bone and soft tissue sarcomas (BSTS) still represent an unmet medical need. We demonstrated that the alkylating agent trabectedin and the PARP1-inhibitor olaparib display antitumor activity in BSTS preclinical models. Moreover, in a phase Ib clinical trial (NCT02398058), feasibility, tolerability and encouraging results have been observed and the treatment combination is currently under study in a phase II trial (NCT03838744). Methods: Differential expression of genes involved in DNA Damage Response and Repair was evaluated by Nanostring® technology, extracting RNA from pre-treatment tumor samples of 16 responder (≥6-month progression free survival) and 16 non-responder patients. Data validation was performed by quantitative real-time PCR, RNA in situ hybridization, and immunohistochemistry. The correlation between the identified candidate genes and both progression-free survival and overall survival was investigated in the publicly available dataset "Sarcoma (TCGA, The Cancer Genome Atlas)". Results: Differential RNA expression analysis revealed an 8-gene signature (CDKN2A, PIK3R1, SLFN11, ATM, APEX2, BLM, XRCC2, MAD2L2) defining patients with better outcome upon trabectedin+olaparib treatment. In responder vs. non-responder patients, a significant differential expression of these genes was further confirmed by RNA in situ hybridization and by qRT-PCR and immunohistochemistry in selected experiments. Correlation between survival outcomes and genetic alterations in the identified genes was shown in the TCGA sarcoma dataset. Conclusions: This work identified an 8-gene expression signature to improve prediction of response to trabectedin+olaparib combination in BSTS. The predictive role of these potential biomarkers warrants further investigation.

9.
Nat Med ; 28(8): 1612-1618, 2022 08.
Article in English | MEDLINE | ID: mdl-35915157

ABSTRACT

Anti-epidermal growth factor receptor (EGFR) monoclonal antibodies are approved for the treatment of RAS wild-type (WT) metastatic colorectal cancer (mCRC), but the emergence of resistance mutations restricts their efficacy. We previously showed that RAS, BRAF and EGFR mutant alleles, which appear in circulating tumor DNA (ctDNA) during EGFR blockade, decline upon therapy withdrawal. We hypothesized that monitoring resistance mutations in blood could rationally guide subsequent therapy with anti-EGFR antibodies. We report here the results of CHRONOS, an open-label, single-arm phase 2 clinical trial exploiting blood-based identification of RAS/BRAF/EGFR mutations levels to tailor a chemotherapy-free anti-EGFR rechallenge with panitumumab (ClinicalTrials.gov: NCT03227926 ; EudraCT 2016-002597-12). The primary endpoint was objective response rate. Secondary endpoints were progression-free survival, overall survival, safety and tolerability of this strategy. In CHRONOS, patients with tissue-RAS WT tumors after a previous treatment with anti-EGFR-based regimens underwent an interventional ctDNA-based screening. Of 52 patients, 16 (31%) carried at least one mutation conferring resistance to anti-EGFR therapy and were excluded. The primary endpoint of the trial was met; and, of 27 enrolled patients, eight (30%) achieved partial response and 17 (63%) disease control, including two unconfirmed responses. These clinical results favorably compare with standard third-line treatments and show that interventional liquid biopsies can be effectively and safely exploited in a timely manner to guide anti-EGFR rechallenge therapy with panitumumab in patients with mCRC. Further larger and randomized trials are warranted to formally compare panitumumab rechallenge with standard-of-care therapies in this patient setting.


Subject(s)
Antineoplastic Agents , Circulating Tumor DNA , Colonic Neoplasms , Colorectal Neoplasms , Rectal Neoplasms , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Circulating Tumor DNA/genetics , Colonic Neoplasms/drug therapy , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Humans , Mutation/genetics , Panitumumab/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Rectal Neoplasms/drug therapy
10.
Nat Genet ; 54(7): 976-984, 2022 07.
Article in English | MEDLINE | ID: mdl-35817983

ABSTRACT

Compelling evidence shows that cancer persister cells represent a major limit to the long-term efficacy of targeted therapies. However, the phenotype and population dynamics of cancer persister cells remain unclear. We developed a quantitative framework to study persisters by combining experimental characterization and mathematical modeling. We found that, in colorectal cancer, a fraction of persisters slowly replicates. Clinically approved targeted therapies induce a switch to drug-tolerant persisters and a temporary 7- to 50-fold increase of their mutation rate, thus increasing the number of persister-derived resistant cells. These findings reveal that treatment may influence persistence and mutability in cancer cells and pinpoint inhibition of error-prone DNA polymerases as a strategy to restrict tumor recurrence.


Subject(s)
Colorectal Neoplasms , Mutation Rate , Anti-Bacterial Agents/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Humans , Population Dynamics
11.
Cancer Discov ; 12(7): 1656-1675, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35522273

ABSTRACT

The majority of metastatic colorectal cancers (mCRC) are mismatch repair (MMR) proficient and unresponsive to immunotherapy, whereas MMR-deficient (MMRd) tumors often respond to immune-checkpoint blockade. We previously reported that the treatment of colorectal cancer preclinical models with temozolomide (TMZ) leads to MMR deficiency, increased tumor mutational burden (TMB), and sensitization to immunotherapy. To clinically translate these findings, we designed the ARETHUSA clinical trial whereby O6-methylguanine-DNA-methyltransferase (MGMT)-deficient, MMR-proficient, RAS-mutant mCRC patients received priming therapy with TMZ. Analysis of tissue biopsies and circulating tumor DNA (ctDNA) revealed the emergence of a distinct mutational signature and increased TMB after TMZ treatment. Multiple alterations in the nucleotide context favored by the TMZ signature emerged in MMR genes, and the p.T1219I MSH6 variant was detected in ctDNA and tissue of 94% (16/17) of the cases. A subset of patients whose tumors displayed the MSH6 mutation, the TMZ mutational signature, and increased TMB achieved disease stabilization upon pembrolizumab treatment. SIGNIFICANCE: MMR-proficient mCRCs are unresponsive to immunotherapy. We provide the proof of concept that inactivation of MMR genes can be achieved pharmacologically with TMZ and molecularly monitored in the tissue and blood of patients with mCRC. This strategy deserves additional evaluation in mCRC patients whose tumors are no longer responsive to standard-of-care treatments. See related commentary by Willis and Overman, p. 1612. This article is highlighted in the In This Issue feature, p. 1599.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , DNA Mismatch Repair , DNA-Binding Proteins/genetics , Dacarbazine/therapeutic use , Humans , Mutation , O(6)-Methylguanine-DNA Methyltransferase/genetics , O(6)-Methylguanine-DNA Methyltransferase/metabolism , Temozolomide/pharmacology , Temozolomide/therapeutic use
12.
Br J Cancer ; 127(3): 394-407, 2022 08.
Article in English | MEDLINE | ID: mdl-35264786

ABSTRACT

Colorectal cancer (CRC) is one of the most prevalent and deadly cancers worldwide. Despite recent improvements in treatment and prevention, most of the current therapeutic options are weighted by side effects impacting patients' quality of life. Better patient selection towards systemic treatments represents an unmet clinical need. The recent multidisciplinary and molecular advancements in the treatment of CRC patients demand the identification of efficient biomarkers allowing to personalise patient care. Currently, core tumour biopsy specimens represent the gold-standard biological tissue to identify such biomarkers. However, technical feasibility, tumour heterogeneity and cancer evolution are major limitations of this single-snapshot approach. Genotyping circulating tumour DNA (ctDNA) has been addressed as potentially overcoming such limitations. Indeed, ctDNA has been retrospectively demonstrated capable of identifying minimal residual disease post-surgery and post-adjuvant treatment, as well as spotting druggable molecular alterations for tailoring treatments in metastatic disease. In this review, we summarise the available evidence on ctDNA applicability in CRC. Then, we review ongoing clinical trials assessing how liquid biopsy can be used interventionally to guide therapeutic choice in localised, locally advanced and metastatic CRC. Finally, we discuss how its widespread could transform CRC patients' management, dissecting its limitations while suggesting improvement strategies.


Subject(s)
Circulating Tumor DNA , Colorectal Neoplasms , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/drug therapy , Humans , Liquid Biopsy , Neoplasm, Residual , Quality of Life , Retrospective Studies
13.
Cancers (Basel) ; 13(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34944915

ABSTRACT

Drug-induced tumor mutational burden (TMB) may contribute to unleashing the immune response in relatively "immune-cold" tumors, such as sarcomas. We previously showed that PARP1 inhibition perpetuates the DNA damage induced by the chemotherapeutic agent trabectedin in both preclinical models and sarcoma patients. In the present work, we explored acquired genetic changes in DNA repair genes, mutational signatures, and TMB in a translational platform composed of cell lines, xenografts, and tumor samples from patients treated with trabectedin and olaparib combination, compared to cells treated with temozolomide, an alkylating agent that induces hypermutation. Whole-exome and targeted panel sequencing data analyses revealed that three cycles of trabectedin and olaparib combination neither affected the mutational profiles, DNA repair gene status, or copy number alterations, nor increased TMB both in homologous recombinant-defective and proficient cells or in xenografts. Moreover, TMB was not increased in tumor specimens derived from trabectedin- and olaparib-treated patients (5-6 cycles) when compared to pre-treatment biopsies. Conversely, repeated treatments with temozolomide induced a massive TMB increase in the SJSA-1 osteosarcoma model. In conclusion, a trabectedin and olaparib combination did not show mutagenic effects and is unlikely to prime subsequent immune-therapeutic interventions based on TMB increase. On the other hand, these findings are reassuring in the increasing warning of treatment-induced hematologic malignancies correlated to PARP1 inhibitor use.

14.
Cancer Discov ; 11(8): 1923-1937, 2021 08.
Article in English | MEDLINE | ID: mdl-33837064

ABSTRACT

Targeted therapies, chemotherapy, and immunotherapy are used to treat patients with mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer. The clinical effectiveness of targeted therapy and chemotherapy is limited by resistance and drug toxicities, and about half of patients receiving immunotherapy have disease that is refractory to immune checkpoint inhibitors. Loss of Werner syndrome ATP-dependent helicase (WRN) is a synthetic lethality in dMMR/MSI-H cells. To inform the development of WRN as a therapeutic target, we performed WRN knockout or knockdown in 60 heterogeneous dMMR colorectal cancer preclinical models, demonstrating that WRN dependency is an almost universal feature and a robust marker for patient selection. Furthermore, models of resistance to clinically relevant targeted therapy, chemotherapy, and immunotherapy retain WRN dependency. These data show the potential of therapeutically targeting WRN in patients with dMMR/MSI-H colorectal cancer and support WRN as a therapeutic option for patients with dMMR/MSI-H cancers refractory to current treatment strategies. SIGNIFICANCE: We found that a large, diverse set of dMMR/MSI-H colorectal cancer preclinical models, including models of treatment-refractory disease, are WRN-dependent. Our results support WRN as a promising synthetic-lethal target in dMMR/MSI-H colorectal cancer tumors as a monotherapy or in combination with targeted agents, chemotherapy, or immunotherapy.This article is highlighted in the In This Issue feature, p. 1861.


Subject(s)
Colorectal Neoplasms/therapy , DNA Mismatch Repair , Werner Syndrome Helicase/genetics , Colorectal Neoplasms/genetics , Drug Therapy , Humans , Immunotherapy , Molecular Targeted Therapy
15.
Science ; 366(6472): 1473-1480, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31699882

ABSTRACT

The emergence of drug resistance limits the efficacy of targeted therapies in human tumors. The prevalent view is that resistance is a fait accompli: when treatment is initiated, cancers already contain drug-resistant mutant cells. Bacteria exposed to antibiotics transiently increase their mutation rates (adaptive mutability), thus improving the likelihood of survival. We investigated whether human colorectal cancer (CRC) cells likewise exploit adaptive mutability to evade therapeutic pressure. We found that epidermal growth factor receptor (EGFR)/BRAF inhibition down-regulates mismatch repair (MMR) and homologous recombination DNA-repair genes and concomitantly up-regulates error-prone polymerases in drug-tolerant (persister) cells. MMR proteins were also down-regulated in patient-derived xenografts and tumor specimens during therapy. EGFR/BRAF inhibition induced DNA damage, increased mutability, and triggered microsatellite instability. Thus, like unicellular organisms, tumor cells evade therapeutic pressures by enhancing mutability.


Subject(s)
Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , DNA Mismatch Repair/genetics , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , Molecular Targeted Therapy , Mutagenesis , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Adaptation, Biological/genetics , Down-Regulation , Humans , Selection, Genetic
16.
Clin Colorectal Cancer ; 18(2): 91-101.e3, 2019 06.
Article in English | MEDLINE | ID: mdl-30981604

ABSTRACT

BACKGROUND: The diagnosis of colorectal cancer (CRC) is routinely accomplished through histopathologic examination. Prognostic information and treatment decisions are mainly determined by TNM classification, first defined in 1968. In the last decade, patient-specific CRC genomic landscapes were shown to provide important prognostic and predictive information. Therefore, there is a need for developing next generation sequencing (NGS) and bioinformatic workflows that can be routinely used for the assessment of prognostic and predictive biomarkers. MATERIALS AND METHODS: To foster the application of genomics in the clinical management of CRCs, the IDEA workflow has been built to easily adapt to the availability of patient specimens and the clinical question that is being asked. Initially, IDEA deploys ad-hoc NGS assays to interrogate predefined genomic target sequences (from 600 kb to 30 Mb) with optimal detection sensitivity. Next, sequencing data are processed through an integrated bioinformatic pipeline to assess single nucleotide variants, insertions and deletions, gene copy-number alterations, and chromosomal rearrangements. The overall results are gathered into a user-friendly report. RESULTS: We provide evidence that IDEA is capable of identifying clinically relevant molecular alterations. When optimized to analyze circulating tumor DNA, IDEA can be used to monitor response and relapse in the blood of patients with metastatic CRC receiving targeted agents. IDEA detected primary and secondary resistance mechanisms to ERBB2 blockade including sub-clonal RAS and BRAF mutations. CONCLUSIONS: The IDEA workflow provides a flexible platform to integrate NGS and bioinformatic tools for refined diagnosis and management of patients with advanced CRC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Colorectal Neoplasms/drug therapy , Genomics/methods , Neoplasm Recurrence, Local/diagnosis , Precision Medicine/methods , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biomarkers, Tumor/antagonists & inhibitors , Circulating Tumor DNA/genetics , Circulating Tumor DNA/isolation & purification , Colorectal Neoplasms/blood , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , DNA Copy Number Variations , Gene Dosage , Genotyping Techniques , High-Throughput Nucleotide Sequencing , Humans , Italy , Lapatinib/pharmacology , Lapatinib/therapeutic use , Mutation , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/prevention & control , Patient Selection , Prognosis , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Treatment Outcome , Workflow
17.
ESMO Open ; 4(6)2019 11.
Article in English | MEDLINE | ID: mdl-32149725

ABSTRACT

BACKGROUND: The analysis of circulating free tumour DNA (ctDNA) in blood, commonly referred as liquid biopsy, is being used to characterise patients with solid cancers. Tumour-specific genetic variants can also be present in DNA isolated from other body fluids, such as urine. Unlike blood, urine sampling is non-invasive, can be self-performed, and allows recurrent longitudinal monitoring. The features of tumour DNA that clears from the glomerular filtration barrier, named trans-renal tumour DNA (trtDNA), are largely unexplored. PATIENTS AND METHODS: Specimens were collected from 24 patients with KRAS or BRAF mutant metastatic colorectal cancer (mCRC). Driver mutations were assessed by droplet digital PCR (ddPCR) in ctDNA from plasma and trtDNA from urine. Whole exome sequencing (WES) was performed in DNA isolated from tissue, plasma and urine. RESULTS: Out of the 24 CRC cases, only four had sufficient DNA to allow WES analyses in urine and plasma. We found that tumour alterations primarily reside in low molecular weight fragments (less than 112 bp). In patients whose trtDNA was more than 2.69% of the urine derived DNA, cancer-specific molecular alterations, mutational signatures and copy number profiles identified in urine DNA are comparable with those detected in plasma ctDNA. CONCLUSIONS: With current technologies, WES analysis of trtDNA is feasible in a small fraction of mCRC patients. Tumour-related genetic information is mainly present in low molecular weight DNA fragments. Although the limited amounts of trtDNA poses analytical challenges, enrichment of low molecular weight DNAs and optimised computational tools can improve the detection of tumour-specific genetic information in urine.


Subject(s)
Biomarkers, Tumor/urine , Circulating Tumor DNA/urine , Colorectal Neoplasms/diagnosis , DNA, Neoplasm/urine , Adult , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/urine , DNA Mutational Analysis/methods , DNA, Neoplasm/genetics , Feasibility Studies , Female , Humans , Liquid Biopsy/methods , Male , Mutation , Polymerase Chain Reaction , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Exome Sequencing
18.
Cancer Cell ; 34(1): 148-162.e7, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29990497

ABSTRACT

Targeting HER2 is effective in 24% of ERBB2 amplified metastatic colorectal cancer; however, secondary resistance occurs in most of the cases. We studied the evolution of individual metastases during treatment to discover spatially resolved determinants of resistance. Circulating tumor DNA (ctDNA) analysis identified alterations associated with resistance in the majority of refractory patients. ctDNA profiles and lesion-specific radiographic reports revealed organ- or metastasis-private evolutionary patterns. When radiologic assessments documented progressive disease in target lesions, response to HER2 blockade was retained in other metastases. Genomic and functional analyses on samples and cell models from eight metastases of a patient co-recruited to a postmortem study unveiled lesion-specific evolutionary trees and pharmacologic vulnerabilities. Lesion size and contribution of distinct metastases to plasma ctDNA were correlated.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Lapatinib/administration & dosage , Liver Neoplasms/drug therapy , Protein Kinase Inhibitors/administration & dosage , Receptor, ErbB-2/antagonists & inhibitors , Tomography, X-Ray Computed , Trastuzumab/administration & dosage , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/genetics , Adenocarcinoma/secondary , Animals , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Class I Phosphatidylinositol 3-Kinases/genetics , Clinical Decision-Making , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , DNA Mutational Analysis , Disease Progression , Female , Gene Amplification , Humans , Italy , Lapatinib/adverse effects , Liquid Biopsy , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Magnetic Resonance Imaging , Male , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Predictive Value of Tests , Progression-Free Survival , Protein Kinase Inhibitors/adverse effects , Receptor, ErbB-2/genetics , Risk Factors , Signal Transduction/drug effects , Time Factors , Trastuzumab/adverse effects , Treatment Outcome , Tumor Cells, Cultured , ras Proteins/genetics
19.
Nature ; 552(7683): 116-120, 2017 12 07.
Article in English | MEDLINE | ID: mdl-29186113

ABSTRACT

Molecular alterations in genes involved in DNA mismatch repair (MMR) promote cancer initiation and foster tumour progression. Cancers deficient in MMR frequently show favourable prognosis and indolent progression. The functional basis of the clinical outcome of patients with tumours that are deficient in MMR is not clear. Here we genetically inactivate MutL homologue 1 (MLH1) in colorectal, breast and pancreatic mouse cancer cells. The growth of MMR-deficient cells was comparable to their proficient counterparts in vitro and on transplantation in immunocompromised mice. By contrast, MMR-deficient cancer cells grew poorly when transplanted in syngeneic mice. The inactivation of MMR increased the mutational burden and led to dynamic mutational profiles, which resulted in the persistent renewal of neoantigens in vitro and in vivo, whereas MMR-proficient cells exhibited stable mutational load and neoantigen profiles over time. Immune surveillance improved when cancer cells, in which MLH1 had been inactivated, accumulated neoantigens for several generations. When restricted to a clonal population, the dynamic generation of neoantigens driven by MMR further increased immune surveillance. Inactivation of MMR, driven by acquired resistance to the clinical agent temozolomide, increased mutational load, promoted continuous renewal of neoantigens in human colorectal cancers and triggered immune surveillance in mouse models. These results suggest that targeting DNA repair processes can increase the burden of neoantigens in tumour cells; this has the potential to be exploited in therapeutic approaches.


Subject(s)
Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , DNA Mismatch Repair/genetics , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/pathology , Animals , Antibodies, Neoplasm/immunology , Antibodies, Neoplasm/therapeutic use , Cell Line, Tumor , Cell Proliferation/genetics , Female , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , MutL Protein Homolog 1/deficiency , MutL Protein Homolog 1/genetics , Neoplasms/genetics , Neoplasms/therapy , Receptors, Antigen, T-Cell/immunology , Tumor Escape/genetics , Tumor Escape/immunology
20.
ESMO Open ; 2(4): e000253, 2017.
Article in English | MEDLINE | ID: mdl-29067216

ABSTRACT

BACKGROUND: Central nervous system (CNS) involvement contributes to significant morbidity and mortality in patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (mBC) and represents a major challenge for clinicians. Liquid biopsy of cerebrospinal fluid (CSF)-derived circulating tumour DNA (ctDNA) harbours clinically relevant genomic alterations in patients with CNS metastases and could be effective in tracking tumour evolution. METHODS: In a HER2-positive mBC patient with brain metastases, we applied droplet digital PCR (ddPCR) and next-generation whole exome sequencing (WES) analysis to measure ctDNA dynamic changes in CSF and plasma collected during treatment. RESULTS: Baseline CSF-derived ctDNA analysis revealed TP53 and PIK3CA mutations as well as ERBB2 and cMYC amplification. Post-treatment ctDNA analysis showed decreased markers level in plasma, consistent with extra-CNS disease control, while increased in the CSF, confirming poor treatment benefit in the CNS. DISCUSSION: Analysis of ctDNA in the CSF of HER2-positive mBC is feasible and could represent a useful companion for clinical management of brain metastases.

SELECTION OF CITATIONS
SEARCH DETAIL
...