Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Plant J ; 117(3): 818-839, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37947266

ABSTRACT

Transcript stability is an important determinant of its abundance and, consequently, translational output. Transcript destabilisation can be rapid and is well suited for modulating the cellular response. However, it is unclear the extent to which RNA stability is altered under changing environmental conditions in plants. We previously hypothesised that recovery-induced transcript destabilisation facilitated a phenomenon of rapid recovery gene downregulation (RRGD) in Arabidopsis thaliana (Arabidopsis) following light stress, based on mathematical calculations to account for ongoing transcription. Here, we test this hypothesis and investigate processes regulating transcript abundance and fate by quantifying changes in transcription, stability and translation before, during and after light stress. We adapt syringe infiltration to apply a transcriptional inhibitor to soil-grown plants in combination with stress treatments. Compared with measurements in juvenile plants and cell culture, we find reduced stability across a range of transcripts encoding proteins involved in RNA binding and processing. We also observe light-induced destabilisation of transcripts, followed by their stabilisation during recovery. We propose that this destabilisation facilitates RRGD, possibly in combination with transcriptional shut-off that was confirmed for HSP101, ROF1 and GOLS1. We also show that translation remains highly dynamic over the course of light stress and recovery, with a bias towards transcript-specific increases in ribosome association, independent of changes in total transcript abundance, after 30 min of light stress. Taken together, we provide evidence for the combinatorial regulation of transcription and stability that occurs to coordinate translation during light stress and recovery in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ribosomes/metabolism , Gene Expression Regulation, Plant/genetics , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
2.
Plant Genome ; 15(3): e20249, 2022 09.
Article in English | MEDLINE | ID: mdl-35924336

ABSTRACT

Accessible chromatin regions are critical components of gene regulation but modeling them directly from sequence remains challenging, especially within plants, whose mechanisms of chromatin remodeling are less understood than in animals. We trained an existing deep-learning architecture, DanQ, on data from 12 angiosperm species to predict the chromatin accessibility in leaf of sequence windows within and across species. We also trained DanQ on DNA methylation data from 10 angiosperms because unmethylated regions have been shown to overlap significantly with ACRs in some plants. The across-species models have comparable or even superior performance to a model trained within species, suggesting strong conservation of chromatin mechanisms across angiosperms. Testing a maize (Zea mays L.) held-out model on a multi-tissue chromatin accessibility panel revealed our models are best at predicting constitutively accessible chromatin regions, with diminishing performance as cell-type specificity increases. Using a combination of interpretation methods, we ranked JASPAR motifs by their importance to each model and saw that the TCP and AP2/ERF transcription factor (TF) families consistently ranked highly. We embedded the top three JASPAR motifs for each model at all possible positions on both strands in our sequence window and observed position- and strand-specific patterns in their importance to the model. With our publicly available across-species 'a2z' model it is now feasible to predict the chromatin accessibility and methylation landscape of any angiosperm genome.


Subject(s)
Chromatin , Magnoliopsida , Animals , Genome , Magnoliopsida/genetics , Neural Networks, Computer , Transcription Factors/genetics , Zea mays/genetics
3.
Plant Physiol ; 190(2): 1153-1164, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35689624

ABSTRACT

CRISPR-Cas9-mediated genome editing has been widely adopted for basic and applied biological research in eukaryotic systems. While many studies consider DNA sequences of CRISPR target sites as the primary determinant for CRISPR mutagenesis efficiency and mutation profiles, increasing evidence reveals the substantial role of chromatin context. Nonetheless, most prior studies are limited by the lack of sufficient epigenetic resources and/or by only transiently expressing CRISPR-Cas9 in a short time window. In this study, we leveraged the wealth of high-resolution epigenomic resources in Arabidopsis (Arabidopsis thaliana) to address the impact of chromatin features on CRISPR-Cas9 mutagenesis using stable transgenic plants. Our results indicated that DNA methylation and chromatin features could lead to substantial variations in mutagenesis efficiency by up to 250-fold. Low mutagenesis efficiencies were mostly associated with repressive heterochromatic features. This repressive effect appeared to persist through cell divisions but could be alleviated through substantial reduction of DNA methylation at CRISPR target sites. Moreover, specific chromatin features, such as H3K4me1, H3.3, and H3.1, appear to be associated with significant variation in CRISPR-Cas9 mutation profiles mediated by the non-homologous end joining repair pathway. Our findings provide strong evidence that specific chromatin features could have substantial and lasting impacts on both CRISPR-Cas9 mutagenesis efficiency and DNA double-strand break repair outcomes.


Subject(s)
Arabidopsis , CRISPR-Cas Systems , Arabidopsis/genetics , CRISPR-Cas Systems/genetics , Chromatin/genetics , Epigenomics , Gene Editing/methods
4.
Proc Natl Acad Sci U S A ; 119(20): e2121362119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35549553

ABSTRACT

Photoinhibitory high light stress in Arabidopsis leads to increases in markers of protein degradation and transcriptional up-regulation of proteases and proteolytic machinery, but proteostasis is largely maintained. We find significant increases in the in vivo degradation rate for specific molecular chaperones, nitrate reductase, glyceraldehyde-3 phosphate dehydrogenase, and phosphoglycerate kinase and other plastid, mitochondrial, peroxisomal, and cytosolic enzymes involved in redox shuttles. Coupled analysis of protein degradation rates, mRNA levels, and protein abundance reveal that 57% of the nuclear-encoded enzymes with higher degradation rates also had high light­induced transcriptional responses to maintain proteostasis. In contrast, plastid-encoded proteins with enhanced degradation rates showed decreased transcript abundances and must maintain protein abundance by other processes. This analysis reveals a light-induced transcriptional program for nuclear-encoded genes, beyond the regulation of the photosystem II (PSII) D1 subunit and the function of PSII, to replace key protein degradation targets in plants and ensure proteostasis under high light stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Proteolysis , Proteostasis , Transcription, Genetic , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Light , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Proteolysis/radiation effects , Proteostasis/genetics , Proteostasis/radiation effects , Transcription, Genetic/radiation effects
5.
Plant J ; 111(1): 103-116, 2022 07.
Article in English | MEDLINE | ID: mdl-35436373

ABSTRACT

The DOMAINS REARRANGED METHYLTRANSFERASEs (DRMs) are crucial for RNA-directed DNA methylation (RdDM) in plant species. Setaria viridis is a model monocot species with a relatively compact genome that has limited transposable element (TE) content. CRISPR-based genome editing approaches were used to create loss-of-function alleles for the two putative functional DRM genes in S. viridis to probe the role of RdDM. Double mutant (drm1ab) plants exhibit some morphological abnormalities but are fully viable. Whole-genome methylation profiling provided evidence for the widespread loss of methylation in CHH sequence contexts, particularly in regions with high CHH methylation in wild-type plants. Evidence was also found for the locus-specific loss of CG and CHG methylation, even in some regions that lack CHH methylation. Transcriptome profiling identified genes with altered expression in the drm1ab mutants. However, the majority of genes with high levels of CHH methylation directly surrounding the transcription start site or in nearby promoter regions in wild-type plants do not have altered expression in the drm1ab mutant, even when this methylation is lost, suggesting limited regulation of gene expression by RdDM. Detailed analysis of the expression of TEs identified several transposons that are transcriptionally activated in drm1ab mutants. These transposons are likely to require active RdDM for the maintenance of transcriptional repression.


Subject(s)
Setaria Plant , DNA Methylation/genetics , Gene Expression Regulation, Plant/genetics , Methyltransferases/genetics , Setaria Plant/genetics , Transcriptome
6.
Biochem Soc Trans ; 50(1): 583-596, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35212360

ABSTRACT

DNA methylation is a chromatin modification that plays an essential role in regulating gene expression and genome stability and it is typically associated with gene silencing and heterochromatin. Owing to its heritability, alterations in the patterns of DNA methylation have the potential to provide for epigenetic inheritance of traits. Contemporary epigenomic technologies provide information beyond sequence variation and could supply alternative sources of trait variation for improvement in crops such as sorghum. Yet, compared with other species such as maize and rice, the sorghum DNA methylome is far less well understood. The distribution of CG, CHG, and CHH methylation in the genome is different compared with other species. CG and CHG methylation levels peak around centromeric segments in the sorghum genome and are far more depleted in the gene dense chromosome arms. The genes regulating DNA methylation in sorghum are also yet to be functionally characterised; better understanding of their identity and functional analysis of DNA methylation machinery mutants in diverse genotypes will be important to better characterise the sorghum methylome. Here, we catalogue homologous genes encoding methylation regulatory enzymes in sorghum based on genes in Arabidopsis, maize, and rice. Discovering variation in the methylome may uncover epialleles that provide extra information to explain trait variation and has the potential to be applied in epigenome-wide association studies or genomic prediction. DNA methylation can also improve genome annotations and discover regulatory elements underlying traits. Thus, improving our knowledge of the sorghum methylome can enhance our understanding of the molecular basis of traits and may be useful to improve sorghum performance.


Subject(s)
Arabidopsis , Oryza , Sorghum , Arabidopsis/genetics , DNA Methylation , Epigenome , Epigenomics , Gene Expression Regulation, Plant , Gene Silencing , Oryza/genetics , Sorghum/genetics , Zea mays/genetics
7.
Emerg Top Life Sci ; 6(2): 141-151, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35072210

ABSTRACT

Epigenomics encompasses a broad field of study, including the investigation of chromatin states, chromatin modifications and their impact on gene regulation; as well as the phenomena of epigenetic inheritance. The epigenome is a multi-modal layer of information superimposed on DNA sequences, instructing their usage in gene expression. As such, it is an emerging focus of efforts to improve crop performance. Broadly, this might be divided into avenues that leverage chromatin information to better annotate and decode plant genomes, and into complementary strategies that aim to identify and select for heritable epialleles that control crop traits independent of underlying genotype. In this review, we focus on the first approach, which we term 'epigenome guided' improvement. This encompasses the use of chromatin profiles to enhance our understanding of the composition and structure of complex crop genomes. We discuss the current progress and future prospects towards integrating this epigenomic information into crop improvement strategies; in particular for CRISPR/Cas9 gene editing and precision genome engineering. We also highlight some specific opportunities and challenges for grain and horticultural crops.


Subject(s)
Epigenome , Epigenomics , Chromatin/genetics , Crops, Agricultural/genetics , Gene Editing
9.
Curr Opin Biotechnol ; 73: 88-94, 2022 02.
Article in English | MEDLINE | ID: mdl-34348216

ABSTRACT

For millennia, natural and artificial selection has combined favourable alleles for desirable traits in crop species. While modern plant breeding has achieved steady increases in crop yields over the last century, on the current trajectory we will simply not meet demand by 2045. Novel breeding strategies and sources of genetic variation will be required to sustainably fill predicted yield gaps and meet new consumer preferences. Here, we highlight that stepping up to meet this grand challenge will increasingly require thinking 'beyond the gene'. Significant progress has been made in understanding the contributions of both epigenetic variation and cis-regulatory variation to plant traits. This non-genic variation has great potential in future breeding, synthetic biology and biotechnology applications.


Subject(s)
Epigenomics , Plant Breeding , Biotechnology , Epigenesis, Genetic/genetics , Phenotype
10.
Plant Cell ; 34(1): 514-534, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34735005

ABSTRACT

Changes in gene expression are important for responses to abiotic stress. Transcriptome profiling of heat- or cold-stressed maize genotypes identifies many changes in transcript abundance. We used comparisons of expression responses in multiple genotypes to identify alleles with variable responses to heat or cold stress and to distinguish examples of cis- or trans-regulatory variation for stress-responsive expression changes. We used motifs enriched near the transcription start sites (TSSs) for thermal stress-responsive genes to develop predictive models of gene expression responses. Prediction accuracies can be improved by focusing only on motifs within unmethylated regions near the TSS and vary for genes with different dynamic responses to stress. Models trained on expression responses in a single genotype and promoter sequences provided lower performance when applied to other genotypes but this could be improved by using models trained on data from all three genotypes tested. The analysis of genes with cis-regulatory variation provides evidence for structural variants that result in presence/absence of transcription factor binding sites in creating variable responses. This study provides insights into cis-regulatory motifs for heat- and cold-responsive gene expression and defines a framework for developing models to predict expression responses across multiple genotypes.


Subject(s)
Cold-Shock Response/genetics , Gene Expression Regulation, Plant/physiology , Genes, Plant , Heat-Shock Response/genetics , Transcriptome , Zea mays/physiology , Gene Expression Profiling , Zea mays/genetics
11.
G3 (Bethesda) ; 11(8)2021 08 07.
Article in English | MEDLINE | ID: mdl-34849810

ABSTRACT

Accessible chromatin and unmethylated DNA are associated with many genes and cis-regulatory elements. Attempts to understand natural variation for accessible chromatin regions (ACRs) and unmethylated regions (UMRs) often rely upon alignments to a single reference genome. This limits the ability to assess regions that are absent in the reference genome assembly and monitor how nearby structural variants influence variation in chromatin state. In this study, de novo genome assemblies for four maize inbreds (B73, Mo17, Oh43, and W22) are utilized to assess chromatin accessibility and DNA methylation patterns in a pan-genome context. A more complete set of UMRs and ACRs can be identified when chromatin data are aligned to the matched genome rather than a single reference genome. While there are UMRs and ACRs present within genomic regions that are not shared between genotypes, these features are 6- to 12-fold enriched within regions between genomes. Characterization of UMRs present within shared genomic regions reveals that most UMRs maintain the unmethylated state in other genotypes with only ∼5% being polymorphic between genotypes. However, the majority (71%) of UMRs that are shared between genotypes only exhibit partial overlaps suggesting that the boundaries between methylated and unmethylated DNA are dynamic. This instability is not solely due to sequence variation as these partially overlapping UMRs are frequently found within genomic regions that lack sequence variation. The ability to compare chromatin properties among individuals with structural variation enables pan-epigenome analyses to study the sources of variation for accessible chromatin and unmethylated DNA.


Subject(s)
DNA Methylation , Zea mays , Chromatin/genetics , Gene Expression Regulation, Plant , Genome, Plant , Humans , Zea mays/genetics
12.
Genetics ; 217(1): 1-13, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33683350

ABSTRACT

Transposable elements (TEs) have the potential to create regulatory variation both through the disruption of existing DNA regulatory elements and through the creation of novel DNA regulatory elements. In a species with a large genome, such as maize, many TEs interspersed with genes create opportunities for significant allelic variation due to TE presence/absence polymorphisms among individuals. We used information on putative regulatory elements in combination with knowledge about TE polymorphisms in maize to identify TE insertions that interrupt existing accessible chromatin regions (ACRs) in B73 as well as examples of polymorphic TEs that contain ACRs among four inbred lines of maize including B73, Mo17, W22, and PH207. The TE insertions in three other assembled maize genomes (Mo17, W22, or PH207) that interrupt ACRs that are present in the B73 genome can trigger changes to the chromatin, suggesting the potential for both genetic and epigenetic influences of these insertions. Nearly 20% of the ACRs located over 2 kb from the nearest gene are located within an annotated TE. These are regions of unmethylated DNA that show evidence for functional importance similar to ACRs that are not present within TEs. Using a large panel of maize genotypes, we tested if there is an association between the presence of TE insertions that interrupt, or carry, an ACR and the expression of nearby genes. While most TE polymorphisms are not associated with expression for nearby genes, the TEs that carry ACRs exhibit enrichment for being associated with higher expression of nearby genes, suggesting that these TEs may contribute novel regulatory elements. These analyses highlight the potential for a subset of TEs to rewire transcriptional responses in eukaryotic genomes.


Subject(s)
Chromatin/metabolism , DNA Transposable Elements/genetics , Gene Expression Regulation, Plant , Zea mays/genetics , Chromatin/genetics , Epigenesis, Genetic
13.
Plant Physiol ; 186(1): 420-433, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33591319

ABSTRACT

Transposable elements (TEs) pervade most eukaryotic genomes. The repetitive nature of TEs complicates the analysis of their expression. Evaluation of the expression of both TE families (using unique and multi-mapping reads) and specific elements (using uniquely mapping reads) in leaf tissue of three maize (Zea mays) inbred lines subjected to heat or cold stress reveals no evidence for genome-wide activation of TEs; however, some specific TE families generate transcripts only in stress conditions. There is substantial variation for which TE families exhibit stress-responsive expression in the different genotypes. In order to understand the factors that drive expression of TEs, we focused on a subset of families in which we could monitor expression of individual elements. The stress-responsive activation of a TE family can often be attributed to a small number of elements in the family that contains regions lacking DNA methylation. Comparisons of the expression of TEs in different genotypes revealed both genetic and epigenetic variation. Many of the specific TEs that are activated in stress in one inbred are not present in the other inbred, explaining the lack of activation. Among the elements that are shared in both genomes but only expressed in one genotype, we found that many exhibit differences in DNA methylation such that the genotype without expression is fully methylated. This study provides insights into the regulation of expression of TEs in normal and stress conditions and highlights the role of chromatin variation between elements in a family or between genotypes for contributing to expression variation. The highly repetitive nature of many TEs complicates the analysis of their expression. Although most TEs are not expressed, some exhibits expression in certain tissues or conditions. We monitored the expression of both TE families (using unique and multi-mapping reads) and specific elements (using uniquely mapping reads) in leaf tissue of three maize (Zea mays) inbred lines subjected to heat or cold stress. While genome-wide activation of TEs did not occur, some TE families generated transcripts only in stress conditions with variation by genotype. To better understand the factors that drive expression of TEs, we focused on a subset of families in which we could monitor expression of individual elements. In most cases, stress-responsive activation of a TE family was attributed to a small number of elements in the family. The elements that contained small regions lacking DNA methylation regions showed enriched expression while fully methylated elements were rarely expressed in control or stress conditions. The cause of varied expression in the different genotypes was due to both genetic and epigenetic variation. Many specific TEs activated by stress in one inbred were not present in the other inbred. Among the elements shared in both genomes, full methylation inhibited expression in one of the genotypes. This study provides insights into the regulation of TE expression in normal and stress conditions and highlights the role of chromatin variation between elements in a family or between genotypes for contributing to expression.


Subject(s)
DNA Transposable Elements/genetics , Epigenesis, Genetic , Gene Expression , Genetic Variation , Stress, Physiological/genetics , Zea mays/physiology , Zea mays/genetics
14.
Proc Natl Acad Sci U S A ; 117(38): 23991-24000, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32879011

ABSTRACT

The genomic sequences of crops continue to be produced at a frenetic pace. It remains challenging to develop complete annotations of functional genes and regulatory elements in these genomes. Chromatin accessibility assays enable discovery of functional elements; however, to uncover the full portfolio of cis-elements would require profiling of many combinations of cell types, tissues, developmental stages, and environments. Here, we explore the potential to use DNA methylation profiles to develop more complete annotations. Using leaf tissue in maize, we define ∼100,000 unmethylated regions (UMRs) that account for 5.8% of the genome; 33,375 UMRs are found greater than 2 kb from genes. UMRs are highly stable in multiple vegetative tissues, and they capture the vast majority of accessible chromatin regions from leaf tissue. However, many UMRs are not accessible in leaf, and these represent regions with potential to become accessible in specific cell types or developmental stages. These UMRs often occur near genes that are expressed in other tissues and are enriched for binding sites of transcription factors. The leaf-inaccessible UMRs exhibit unique chromatin modification patterns and are enriched for chromatin interactions with nearby genes. The total UMR space in four additional monocots ranges from 80 to 120 megabases, which is remarkably similar considering the range in genome size of 271 megabases to 4.8 gigabases. In summary, based on the profile from a single tissue, DNA methylation signatures provide powerful filters to distill large genomes down to the small fraction of putative functional genes and regulatory elements.


Subject(s)
DNA Methylation/genetics , Gene Expression Regulation, Plant/genetics , Genome, Plant/genetics , Regulatory Sequences, Nucleic Acid/genetics , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , DNA, Plant/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Zea mays/genetics
15.
Plant J ; 104(3): 828-838, 2020 11.
Article in English | MEDLINE | ID: mdl-32786122

ABSTRACT

In recent years, Setaria viridis has been developed as a model plant to better understand the C4 photosynthetic pathway in major crops. With the increasing availability of genomic resources for S. viridis research, highly efficient genome editing technologies are needed to create genetic variation resources for functional genomics. Here, we developed a protoplast assay to rapidly optimize the multiplexed clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system in S. viridis. Targeted mutagenesis efficiency was further improved by an average of 1.4-fold with the exonuclease, Trex2. Distinctive mutation profiles were found in the Cas9_Trex2 samples, with 94% of deletions larger than 10 bp, and essentially no insertions at all tested target sites. Further analyses indicated that 52.2% of deletions induced by Cas9_Trex2, as opposed to 3.5% by Cas9 alone, were repaired through microhomology-mediated end joining (MMEJ) rather than the canonical non-homologous end joining DNA repair pathway. Combined with a robust Agrobacterium-mediated transformation method with more than 90% efficiency, the multiplex CRISPR/Cas9_Trex2 system was demonstrated to induce targeted mutations in two tightly linked genes, svDrm1a and svDrm1b, at a frequency ranging from 73% to 100% in T0 plants. These mutations were transmitted to at least 60% of the transgene-free T1 plants, with 33% of them containing bi-allelic or homozygous mutations in both genes. This highly efficient multiplex CRISPR/Cas9_Trex2 system makes it possible to create a large mutant resource for S. viridis in a rapid and high throughput manner, and has the potential to be widely applicable in achieving more predictable and deletion-only MMEJ-mediated mutations in many plant species.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Setaria Plant/genetics , Exodeoxyribonucleases/genetics , Gene Knockout Techniques , Genome, Plant , Mutagenesis , Mutation , Plant Proteins/genetics , Plants, Genetically Modified , Protoplasts/physiology
16.
Plant Cell ; 32(5): 1377-1396, 2020 05.
Article in English | MEDLINE | ID: mdl-32184350

ABSTRACT

The regulation of gene expression is central to many biological processes. Gene regulatory networks (GRNs) link transcription factors (TFs) to their target genes and represent maps of potential transcriptional regulation. Here, we analyzed a large number of publically available maize (Zea mays) transcriptome data sets including >6000 RNA sequencing samples to generate 45 coexpression-based GRNs that represent potential regulatory relationships between TFs and other genes in different populations of samples (cross-tissue, cross-genotype, and tissue-and-genotype samples). While these networks are all enriched for biologically relevant interactions, different networks capture distinct TF-target associations and biological processes. By examining the power of our coexpression-based GRNs to accurately predict covarying TF-target relationships in natural variation data sets, we found that presence/absence changes rather than quantitative changes in TF gene expression are more likely associated with changes in target gene expression. Integrating information from our TF-target predictions and previous expression quantitative trait loci (eQTL) mapping results provided support for 68 TFs underlying 74 previously identified trans-eQTL hotspots spanning a variety of metabolic pathways. This study highlights the utility of developing multiple GRNs within a species to detect putative regulators of important plant pathways and provides potential targets for breeding or biotechnological applications.


Subject(s)
Gene Expression Regulation, Plant , Gene Regulatory Networks , Zea mays/genetics , Arabidopsis/genetics , Databases, Genetic , Gene Ontology , Molecular Sequence Annotation , Phylogeny , Quantitative Trait Loci/genetics , Transcription Factors/metabolism
17.
G3 (Bethesda) ; 10(5): 1727-1743, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32179621

ABSTRACT

Plants are subjected to extreme environmental conditions and must adapt rapidly. The phytohormone abscisic acid (ABA) accumulates during abiotic stress, signaling transcriptional changes that trigger physiological responses. Epigenetic modifications often facilitate transcription, particularly at genes exhibiting temporal, tissue-specific and environmentally-induced expression. In maize (Zea mays), MEDIATOR OF PARAMUTATION 1 (MOP1) is required for progression of an RNA-dependent epigenetic pathway that regulates transcriptional silencing of loci genomewide. MOP1 function has been previously correlated with genomic regions adjoining particular types of transposable elements and genic regions, suggesting that this regulatory pathway functions to maintain distinct transcriptional activities within genomic spaces, and that loss of MOP1 may modify the responsiveness of some loci to other regulatory pathways. As critical regulators of gene expression, MOP1 and ABA pathways each regulate specific genes. To determine whether loss of MOP1 impacts ABA-responsive gene expression in maize, mop1-1 and Mop1 homozygous seedlings were subjected to exogenous ABA and RNA-sequencing. A total of 3,242 differentially expressed genes (DEGs) were identified in four pairwise comparisons. Overall, ABA-induced changes in gene expression were enhanced in mop1-1 homozygous plants. The highest number of DEGs were identified in ABA-induced mop1-1 mutants, including many transcription factors; this suggests combinatorial regulatory scenarios including direct and indirect transcriptional responses to genetic disruption (mop1-1) and/or stimulus-induction of a hierarchical, cascading network of responsive genes. Additionally, a modest increase in CHH methylation at putative MOP1-RdDM loci in response to ABA was observed in some genotypes, suggesting that epigenetic variation might influence environmentally-induced transcriptional responses in maize.


Subject(s)
Abscisic Acid , Zea mays , Abscisic Acid/pharmacology , Epigenesis, Genetic , Gene Expression Regulation, Plant , Mutation , Plant Proteins/genetics , Zea mays/genetics , Zea mays/metabolism
18.
Plant Cell Environ ; 43(3): 594-610, 2020 03.
Article in English | MEDLINE | ID: mdl-31860752

ABSTRACT

To further our understanding of how sustained changes in temperature affect the carbon economy of rice (Oryza sativa), hydroponically grown plants of the IR64 cultivar were developed at 30°C/25°C (day/night) before being shifted to 25/20°C or 40/35°C. Leaf messenger RNA and protein abundance, sugar and starch concentrations, and gas-exchange and elongation rates were measured on preexisting leaves (PE) already developed at 30/25°C or leaves newly developed (ND) subsequent to temperature transfer. Following a shift in growth temperature, there was a transient adjustment in metabolic gene transcript abundance of PE leaves before homoeostasis was reached within 24 hr, aligning with Rdark (leaf dark respiratory CO2 release) and An (net CO2 assimilation) changes. With longer exposure, the central respiratory protein cytochrome c oxidase (COX) declined in abundance at 40/35°C. In contrast to Rdark , An was maintained across the three growth temperatures in ND leaves. Soluble sugars did not differ significantly with growth temperature, and growth was fastest with extended exposure at 40/35°C. The results highlight that acclimation of photosynthesis and respiration is asynchronous in rice, with heat-acclimated plants exhibiting a striking ability to maintain net carbon gain and growth when exposed to heat-wave temperatures, even while reducing investment in energy-conserving respiratory pathways.


Subject(s)
Acclimatization/physiology , Oryza/genetics , Oryza/physiology , Photosynthesis/physiology , Plant Leaves/physiology , Temperature , Acclimatization/radiation effects , Biomass , Carbon Dioxide/metabolism , Cell Respiration/genetics , Cell Respiration/radiation effects , Down-Regulation/genetics , Down-Regulation/radiation effects , Electron Transport/radiation effects , Gene Expression Regulation, Plant/radiation effects , Gene Ontology , Light , Mitochondria/metabolism , Mitochondria/radiation effects , Oryza/radiation effects , Photosynthesis/radiation effects , Plant Leaves/radiation effects , Principal Component Analysis , Ribulose-Bisphosphate Carboxylase/metabolism , Up-Regulation/genetics , Up-Regulation/radiation effects
19.
Plant Physiol ; 182(1): 318-331, 2020 01.
Article in English | MEDLINE | ID: mdl-31575624

ABSTRACT

Small RNAs (sRNAs) regulate gene expression, play important roles in epigenetic pathways, and are hypothesized to contribute to hybrid vigor in plants. Prior investigations have provided valuable insights into associations between sRNAs and heterosis, often using a single hybrid genotype or tissue, but our understanding of the role of sRNAs and their potential value to plant breeding are limited by an incomplete picture of sRNA variation between diverse genotypes and development stages. Here, we provide a deep exploration of sRNA variation and inheritance among a panel of 108 maize (Zea mays) samples spanning five tissues from eight inbred parents and 12 hybrid genotypes, covering a spectrum of heterotic groups, genetic variation, and levels of heterosis for various traits. We document substantial developmental and genotypic influences on sRNA expression, with varying patterns for 21-nucleotide (nt), 22-nt, and 24-nt sRNAs. We provide a detailed view of the distribution of sRNAs in the maize genome, revealing a complex makeup that also shows developmental plasticity, particularly for 22-nt sRNAs. sRNAs exhibited substantially more variation between inbreds as compared with observed variation for gene expression. In hybrids, we identify locus-specific examples of nonadditive inheritance, mostly characterized as partial or complete dominance, but rarely outside the parental range. However, the global abundance of 21-nt, 22-nt, and 24-nt sRNAs varies very little between inbreds and hybrids, suggesting that hybridization affects sRNA expression principally at specific loci rather than on a global scale. This study provides a valuable resource for understanding the potential role of sRNAs in hybrid vigor.


Subject(s)
RNA, Plant/genetics , Zea mays/genetics , Gene Expression Regulation, Plant/genetics , Genotype , Hybrid Vigor/genetics , Hybridization, Genetic
20.
Genome Biol ; 20(1): 243, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31744513

ABSTRACT

BACKGROUND: DNA methylation can provide a source of heritable information that is sometimes entirely uncoupled from genetic variation. However, the extent of this uncoupling and the roles of DNA methylation in shaping diversity of both gene expression and phenotypes are hotly debated. Here, we investigate the genetic basis and biological functions of DNA methylation at a population scale in maize. RESULTS: We perform targeted DNA methylation profiling for a diverse panel of 263 maize inbred genotypes. All genotypes show similar levels of DNA methylation globally, highlighting the importance of DNA methylation in maize development. Nevertheless, we identify more than 16,000 differentially methylated regions (DMRs) that are distributed across the 10 maize chromosomes. Genome-wide association analysis with high-density genetic markers reveals that over 60% of the DMRs are not tagged by SNPs, suggesting the presence of unique information in DMRs. Strong associations between DMRs and the expression of many genes are identified in both the leaf and kernel tissues, pointing to the biological significance of methylation variation. Association analysis with 986 metabolic traits suggests that DNA methylation is associated with phenotypic variation of 156 traits. There are some traits that only show significant associations with DMRs and not with SNPs. CONCLUSIONS: These results suggest that DNA methylation can provide unique information to explain phenotypic variation in maize.


Subject(s)
DNA Methylation , Phenotype , Zea mays/genetics , Gene Expression , Genome, Plant , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...