Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Stat Med ; 43(8): 1489-1508, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38314950

ABSTRACT

We investigate estimation of causal effects of multiple competing (multi-valued) treatments in the absence of randomization. Our work is motivated by an intention-to-treat study of the relative cardiometabolic risk of assignment to one of six commonly prescribed antipsychotic drugs in a cohort of nearly 39 000 adults with serious mental illnesses. Doubly-robust estimators, such as targeted minimum loss-based estimation (TMLE), require correct specification of either the treatment model or outcome model to ensure consistent estimation; however, common TMLE implementations estimate treatment probabilities using multiple binomial regressions rather than multinomial regression. We implement a TMLE estimator that uses multinomial treatment assignment and ensemble machine learning to estimate average treatment effects. Our multinomial implementation improves coverage, but does not necessarily reduce bias, relative to the binomial implementation in simulation experiments with varying treatment propensity overlap and event rates. Evaluating the causal effects of the antipsychotics on 3-year diabetes risk or death, we find a safety benefit of moving from a second-generation drug considered among the safest of the second-generation drugs to an infrequently prescribed first-generation drug known for having low cardiometabolic risk.


Subject(s)
Antipsychotic Agents , Cardiovascular Diseases , Humans , Antipsychotic Agents/adverse effects , Computer Simulation , Likelihood Functions , Models, Statistical , Adult , Observational Studies as Topic
2.
JAMA Netw Open ; 4(11): e2132540, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34726743

ABSTRACT

Importance: Continuous assessment of the effectiveness and safety of the US Food and Drug Administration-authorized SARS-CoV-2 vaccines is critical to amplify transparency, build public trust, and ultimately improve overall health outcomes. Objective: To evaluate the effectiveness of the Johnson & Johnson Ad26.COV2.S vaccine for preventing SARS-CoV-2 infection. Design, Setting, and Participants: This comparative effectiveness research study used large-scale longitudinal curation of electronic health records from the multistate Mayo Clinic Health System (Minnesota, Arizona, Florida, Wisconsin, and Iowa) to identify vaccinated and unvaccinated adults between February 27 and July 22, 2021. The unvaccinated cohort was matched on a propensity score derived from age, sex, zip code, race, ethnicity, and previous number of SARS-CoV-2 polymerase chain reaction tests. The final study cohort consisted of 8889 patients in the vaccinated group and 88 898 unvaccinated matched patients. Exposure: Single dose of the Ad26.COV2.S vaccine. Main Outcomes and Measures: The incidence rate ratio of SARS-CoV-2 infection in the vaccinated vs unvaccinated control cohorts, measured by SARS-CoV-2 polymerase chain reaction testing. Results: The study was composed of 8889 vaccinated patients (4491 men [50.5%]; mean [SD] age, 52.4 [16.9] years) and 88 898 unvaccinated patients (44 748 men [50.3%]; mean [SD] age, 51.7 [16.7] years). The incidence rate ratio of SARS-CoV-2 infection in the vaccinated vs unvaccinated control cohorts was 0.26 (95% CI, 0.20-0.34) (60 of 8889 vaccinated patients vs 2236 of 88 898 unvaccinated individuals), which corresponds to an effectiveness of 73.6% (95% CI, 65.9%-79.9%) and a 3.73-fold reduction in SARS-CoV-2 infections. Conclusions and Relevance: This study's findings are consistent with the clinical trial-reported efficacy of Ad26.COV2.S and the first retrospective analysis, suggesting that the vaccine is effective at reducing SARS-CoV-2 infection, even with the spread of variants such as Alpha or Delta that were not present in the original studies, and reaffirm the urgent need to continue mass vaccination efforts globally.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Ad26COVS1 , Adolescent , Adult , Aged , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Nucleic Acid Testing , COVID-19 Vaccines/administration & dosage , Drug Evaluation , Female , Humans , Incidence , Male , Middle Aged , Pandemics , Propensity Score , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Time Factors , United States/epidemiology , Vaccination/statistics & numerical data , Young Adult
3.
Sci Adv ; 6(20): eaay9234, 2020 May.
Article in English | MEDLINE | ID: mdl-32440541

ABSTRACT

We present a macroscopic analog of an open quantum system, achieved with a classical pilot-wave system. Friedel oscillations are the angstrom-scale statistical signature of an impurity on a metal surface, concentric circular modulations in the probability density function of the surrounding electron sea. We consider a millimetric drop, propelled by its own wave field along the surface of a vibrating liquid bath, interacting with a submerged circular well. An ensemble of drop trajectories displays a statistical signature in the vicinity of the well that is strikingly similar to Friedel oscillations. The droplet trajectories reveal the dynamical roots of the emergent statistics. Our study elucidates a new mechanism for emergent quantum-like statistics in pilot-wave hydrodynamics and so suggests new directions for the nascent field of hydrodynamic quantum analogs.

4.
Chaos ; 28(9): 096116, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30278624

ABSTRACT

A millimetric liquid droplet may walk across the surface of a vibrating liquid bath through a resonant interaction with its self-generated wavefield. Such walking droplets, or "walkers," have attracted considerable recent interest because they exhibit certain features previously believed to be exclusive to the microscopic, quantum realm. In particular, the intricate motion of a walker confined to a closed geometry is known to give rise to a coherent wave-like statistical behavior similar to that of electrons confined to quantum corrals. Here, we examine experimentally the dynamics of a walker inside a circular corral. We first illustrate the emergence of a variety of stable dynamical states for relatively low vibrational accelerations, which lead to a double quantisation in angular momentum and orbital radius. We then characterise the system's transition to chaos for increasing vibrational acceleration and illustrate the resulting breakdown of the double quantisation. Finally, we discuss the similarities and differences between the dynamics and statistics of a walker inside a circular corral and that of a walker subject to a simple harmonic potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...