Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Org Chem ; 81(23): 11656-11663, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27809524

ABSTRACT

The influence of the position of the methyl substituent in 1- and 2-methyl-substituted 5-aminotetrazoles on the photochemistry of these molecules is evaluated. The two compounds were isolated in an argon matrix (15 K) and the matrix was subjected to in situ narrowband UV excitation at different wavelengths, which induce selectively photochemical transformations of different species (reactants and initially formed photoproducts). The progress of the reactions was followed by infrared spectroscopy, supported by quantum chemical calculations. It is shown that the photochemistries of the two isomers, 1-methyl-(1H)-tetrazole-5-amine (1a) and 2-methyl-(2H)-tetrazole-5-amine (1b), although resulting in a common intermediate diazirine 3, which undergoes subsequent photoconversion into 1-amino-3-methylcarbodiimide (H2N-N═C═N-CH3), show marked differences: formation of the amino cyanamide 4 (H2N-N(CH3)-C≡N) is only observed from the photocleavage of the isomer 1a, whereas formation of the nitrile imine 2 (H2N-C-═N+═N-CH3) is only obtained from photolysis of 1b. The exclusive formation of nitrile imine from the isomer 1b points to the possibility that only the 2H-tetrazoles forms can give a direct access to nitrile imines, while observation of the amino cyanamide 4 represents a novel reaction pathway in the photochemistry of tetrazoles and seems to be characteristic of 1H-tetrazoles. The structural and vibrational characterization of both reactants and photoproducts has been undertaken.

2.
J Org Chem ; 80(1): 392-400, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25438067

ABSTRACT

The molecular structure and photochemistry of 5-thiosaccharyl-1-methyltetrazole (TSMT) were studied by means of matrix-isolation FTIR spectroscopy, X-ray crystallography, and theoretical calculations. The calculations predicted two conformers of TSMT that differ in energy by more than 15 kJ mol(-1). The infrared spectrum of TSMT isolated in solid argon was fully assigned on the basis of the spectrum calculated (O3LYP/6-311++G(3df,3pd)) for the most stable conformer. In the crystal, TSMT molecules were found to assume the same conformation as for the isolated molecule, with each molecule forming four hydrogen bonds with three neighboring molecules, leading to a network of TSMT oligomers. Upon UV (λ = 265 nm) irradiation of the matrix-isolated TSMT, two photodegradation pathways were observed, both arising from cleavage of the tetrazolyl ring. Pathway a involves cleavage of the N1-N2 and N3-N4 bonds with extrusion of N2, leading to photostable diazirine and thiocarbodiimide derivatives. The photostability of the photoproduced diazirine under the conditions used precluded its rearrangement to the nitrile imine, as reported for 5-phenyltetrazole by Bégué et al. ( J. Am. Chem. Soc. 2012 , 134 , 5339 ). Pathway b involves cleavage of the C5-N1 and N4-N3 bonds, leading to a thiocyanate and methyl azide, the latter undergoing subsequent fragmentation to give CNH.

3.
Parasitol Int ; 62(6): 575-82, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23831484

ABSTRACT

Perkinsus olseni, the causative agent of Perkinsosis, can drastically affect the survival of target marine mollusks, with dramatic economic consequences for aquaculture. P. olseni is a member of the Alveolata group, which also comprises parasites that are highly relevant for medical and veterinary sciences such as Plasmodium falciparum and Toxoplasma. P. olseni shares several unique metabolic pathways with those pathological parasites but is not toxic to humans. In this work, six antimalarially active peroxides, derived from the natural product artemisinin or synthetic trioxolanes, were synthesized and tested on P. olseni proliferation and survival. All peroxides tested revealed an inhibitory effect on P. olseni proliferation at micromolar concentrations. The relevance of the peroxide functionality on toxicity and the effect of Fe(II)-intracellular concentration on activity were also evaluated. Results demonstrated that the peroxide functionality is the toxofore and intracellular iron concentration also proved to be a crucial co-factor on the activation of peroxides in P. olseni. These data points to a mechanism of bioactivation in P. olseni sharing similarities with the one proposed in P. falciparum parasites. Preliminary studies on bioaccumulation were conducted using fluorescent-labeled peroxides. Results show that synthetic trioxolanes tend to accumulate on a vacuole while the labeled artemisinin accumulates in the cytoplasm. Preliminary experiments on differential genes expression associated to Fe(II) transport protein (Nramp) and calcium transport protein (ATP6/SERCA) were also conducted by qPCR. Results point to a fourfold increase in expression of both genes upon exposure to trioxolanes and approximately twofold upon exposure to artemisinin derivatives. Data obtained in this investigation is relevant for better understanding of the biology of Perkinsus and may also be important in the development of new strategies for Perkinsosis prevention and control.


Subject(s)
Alveolata/drug effects , Antiparasitic Agents/pharmacology , Artemisinins/pharmacology , Bivalvia/parasitology , Peroxides/pharmacology , Adenosine Triphosphatases/drug effects , Adenosine Triphosphatases/genetics , Alveolata/cytology , Alveolata/genetics , Animals , Antiparasitic Agents/chemistry , Artemisinins/chemistry , Cation Transport Proteins/drug effects , Cation Transport Proteins/genetics , Cell Proliferation/drug effects , Ferrous Compounds/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Peroxides/chemistry , Protozoan Proteins/genetics
4.
J Org Chem ; 78(7): 3271-5, 2013 Apr 05.
Article in English | MEDLINE | ID: mdl-23477671

ABSTRACT

Most known applications of saccharin and saccharyl derivatives and their potential for new uses rely on the thermal and photochemical stability of the saccharyl system. Here, we show that saccharin undergoes structural rearrangement when subjected to a narrow-band ultraviolet irradiation. Monomeric saccharin was isolated in low-temperature argon matrices and its photochemistry was characterized by means of infrared spectroscopy and DFT calculations. Among several DFT methods used, the O3LYP/6-311++G(3df,3pd) level gave the best match with the experimental spectra. Irradiation of matrix-isolated saccharin, with a narrow-band source (290 nm), generates a so far unknown isomer that we call iso-saccharin. The structures of the conjugate bases of saccharin and iso-saccharin were also computed theoretically. Their free energies and dipole moments suggest that both anions may be relevant in systems where saccharin participates, as is the case of the recently proposed saccharin-based ionic liquids.


Subject(s)
Saccharin/chemistry , Ultraviolet Rays , Molecular Structure , Photochemical Processes , Quantum Theory , Stereoisomerism
5.
J Phys Chem A ; 117(15): 3190-7, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23514408

ABSTRACT

The amino-imino tautomerization of the nitrogen-linked conjugate 2-methyltetrazole-saccharinate (2MTS) was observed upon sublimation of the compound in vacuo. As shown previously by X-ray diffraction [Ismael, A.; Paixão, J. A.; Fausto, R.; Cristiano, M. L. S. J. Mol. Struct., 2011, 1023, 128-142], in the crystalline phase the compound exists in an amino-bridged tautomeric form. Infrared spectroscopic investigation of a cryogenic matrix prepared after sublimation of a crystalline sample of 2MTS and deposition of the sublimate together with argon (in ~1:1000 molar ratio) onto an IR-transparent cold (15 K) substrate, revealed that the form of 2MTS present in the matrix corresponds to the theoretically predicted most stable imino-bridged tautomer. In this tautomer, the labile hydrogen atom is connected to the saccharine nitrogen, and the two heterocyclic fragments are linked by an imino moiety in which the double-bond is established with the carbon atom belonging to the saccharyl fragment. The observed isomeric form of this tautomer is characterized by a zusammen (Z) arrangement of the two rings around the C═N bond of the bridging group and an intramolecular NH···N hydrogen bond. The experimental IR spectrum of the matrix-isolated 2MTS has been fully assigned based on the calculated spectra for the two most stable conformers of this tautomer. A mechanism for the conversion of the tautomeric form existing in the crystal into that present in the gas phase is proposed. As a basis for the interpretation of the experimental results, a detailed theoretical [at the DFT(B3LYP) level of approximation with the 6-31++G(d,p) and 6-311++G(3df,3pd)] study of the potential energy surface of the compound was performed.


Subject(s)
Saccharin/chemistry , Tetrazoles/chemistry , Hydrogen Bonding , Isomerism , Models, Molecular , Molecular Dynamics Simulation , Spectrophotometry, Infrared
6.
J Phys Chem A ; 114(50): 13076-85, 2010 Dec 23.
Article in English | MEDLINE | ID: mdl-21114300

ABSTRACT

A combined matrix isolation FTIR and theoretical DFT/B3LYP/6-311++G(d,p) study of the molecular structure and photochemistry of 1-(tetrazol-5-yl)ethanol [1-TE] was performed. The potential energy surface landscapes of the 1H and 2H tautomers of the compound were investigated and the theoretical results were used to help characterize the conformational mixture existing in equilibrium in the gas phase prior to deposition of the matrices, as well as the conformers trapped in the latter. In the gas phase, at room temperature, the compound exists as a mixture of 12 conformers (five of the 1H tautomer and seven of the 2H tautomer). Upon deposition of the compound in an argon matrix at 10 K, only three main forms survive, because the low barriers for conformational isomerization allow extensive conformational cooling during deposition. Deposition of the matrix at 30 K led to further simplification of the conformational mixture with only one conformer of each tautomer of 1-TE surviving. These conformers correspond to the most stable forms of each tautomer, which bear different types of intramolecular H-bonds: 1H-I has an NH···O hydrogen bond, whereas 2H-I has an OH···N hydrogen bond. Upon irradiating with UV light (λ > 200 nm), a matrix containing both 1H-I and 2H-I forms, an unprecedented tautomer selective photochemistry was observed, with the 2H tautomeric form undergoing unimolecular decomposition to azide + hydroxypropanenitrile and the 1H-tautomer being photostable.


Subject(s)
Ethanol/analogs & derivatives , Ethanol/chemistry , Photochemical Processes , Tetrazoles/chemistry , Isomerism , Models, Molecular , Molecular Conformation , Quantum Theory , Spectroscopy, Fourier Transform Infrared , Thermodynamics
7.
J Phys Chem A ; 113(15): 3517-22, 2009 Apr 16.
Article in English | MEDLINE | ID: mdl-19320466

ABSTRACT

The thermally induced sigmatropic isomerization of the pseudosaccharyl allylic ether [3-(allyloxy)-1,2-benzisothiazole 1,1-dioxide; ABID] has been investigated by a multidisciplinary approach using temperature dependent infrared spectroscopy, differential scanning calorimetry, and polarized light thermomicroscopy, complemented by theoretical methods. Migration of the allylic system from O to N occurs in the melted ABID, and the thermally obtained 2-allyl-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (ABIOD) starts to be produced at ca. 150 degrees C, in a process with an activation energy of approximately 92 kJ mol(-1). From kinetic data, a concerted [3,3'] sigmatropic mechanism is proposed. In the temperature range investigated, ABIOD was found to exhibit polymorphism. Cooling of the molten compound leads to the production of a metastable crystalline form, which upon annealing at room temperature might be transformed to the stable crystalline phase. ABID shows a single crystalline variety. Assignments were proposed for the infrared spectra of the observed neat condensed phases of the two compounds.


Subject(s)
Oxides/chemistry , Temperature , Thiazoles/chemistry , Calorimetry, Differential Scanning , Isomerism , Kinetics , Microscopy, Polarization , Spectrophotometry, Infrared
8.
Org Biomol Chem ; 6(6): 1046-55, 2008 Mar 21.
Article in English | MEDLINE | ID: mdl-18327330

ABSTRACT

The photochemistry of three 5-allyloxy-tetrazoles, in methanol, acetonitrile and cyclohexane was studied by product analysis and laser flash photolysis. The exclusive primary photochemical process identified was molecular nitrogen elimination, with formation of 1,3-oxazines. These compounds were isolated in reasonable yields by column chromatography on silica gel and were fully characterized. DFT(B3LYP)/6-31G(d,p) calculations predict that these 1,3-oxazines can adopt two tautomeric forms (i) with the NH group acting as a bridge connecting the oxazine and phenyl rings and (ii) with the -N=bridge and the proton shifted to the oxazine ring. Both tautomeric forms are relevant in the photolysis of oxazines in solution. Secondary reactions were observed, leading to the production of phenyl vinyl-hydrazines, enamines, aniline and phenyl-isocyanate. Transient absorption, detected by laser flash photolysis, is attributed to the formation of triplet 1,3-biradicals generated from the excited 5-allyloxy-tetrazoles. The 1,3-biradicals are converted to 1,6-biradicals by proton transfer, which, after intersystem crossing, decay to generate the products. Solvent effects on the photoproduct distribution and rate of decomposition are negligible.


Subject(s)
Allyl Compounds/chemistry , Photolysis , Tetrazoles/chemistry , Computer Simulation , Models, Chemical , Molecular Structure , Photochemistry , Spectrophotometry, Ultraviolet , Structure-Activity Relationship , Tetrazoles/radiation effects , Ultraviolet Rays
9.
Photochem Photobiol Sci ; 6(11): 1170-6, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17973049

ABSTRACT

The photochemistry and molecular structure of 1-phenyl-4-allyl-tetrazolone (PAT) was studied by FT-IR matrix isolation spectroscopy and DFT(B3LYP)/6-311++G(d,p) calculations. The spectrum of matrix-isolated PAT monomers agrees well with the sum spectrum of three conformers predicted theoretically. UV irradiation (lambda > 235 nm) of matrix-isolated PAT induces three types of photofragmentation: (1) production of phenylazide and allyl-isocyanate, with phenylazide then losing N(2) to yield 1-aza-1,2,4,6-cycloheptatetraene; (2) formation of phenyl-isocyanate and allylazide; (3) N(2) elimination leading to formation of 1-allyl-2-phenyldiaziridin-3-one; this compound partially reacts further to form 1-allyl-1H-benzoimidazol-2(3H)-one. The observed photochemistry of the matrix-isolated PAT is distinct from the preferred photochemical fragmentation in solution, where 3,4-dihydro-3-phenylpyrimidin-2(1H)-one is produced as the primary photoproduct.


Subject(s)
Tetrazoles/chemistry , Tetrazoles/radiation effects , Molecular Structure , Photochemistry , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Ultraviolet Rays
10.
J Phys Chem A ; 111(15): 2879-88, 2007 Apr 19.
Article in English | MEDLINE | ID: mdl-17388403

ABSTRACT

A combined matrix isolation FT-IR and theoretical DFT(B3LYP)/6-311++G(d,p) study of the molecular structure and photochemistry of 5-ethoxy-1-phenyl-1H-tetrazole (5EPT) was performed. A new method of synthesis of the compound is described. Calculations show three minima, very close in energy and separated by low-energy barriers (less than 4 kJ mol-1), in the ground-state potential energy profile of the molecule. The method of matrix isolation enabled the reduction of the number of populated conformational states in the experiment at low temperature due to the effect known as conformational cooling. As a result, the spectrum of the as-deposited matrix of 5EPT closely matches that of the most stable conformer predicted theoretically, pointing to the existence of only this conformer in the low-temperature matrixes. In this structure, the dihedral angle between the two rings, phenyl and tetrazole, is ca. 30 degrees, whereas the ethyl group stays nearly in the plane of the tetrazole ring and is as far as possible from the phenyl group. In situ UV irradiation (lambda > 235 nm) of the matrix-isolated 5EPT induced unimolecular decomposition, which led mainly to production of ethylcyanate and phenylazide, this later compound further reacting to yield, as final product, 1-aza-1,2,4,6-cycloheptatetraene. Anti-aromatic 3-ethoxy-1-phenyl-1H-diazirene was also observed experimentally as minor photoproduct, resulting from direct extrusion of molecular nitrogen from 5EPT. This species has not been described before and is now characterized by infrared spectroscopy for the first time.


Subject(s)
Chemistry, Physical/methods , Light , Photochemistry/methods , Tetrazoles/chemistry , Azides/chemistry , Cyanates/chemistry , Molecular Conformation , Molecular Structure , Protein Conformation , Spectrophotometry, Infrared , Temperature , Thermodynamics
11.
J Phys Chem A ; 110(20): 6415-25, 2006 May 25.
Article in English | MEDLINE | ID: mdl-16706396

ABSTRACT

A combined matrix isolation FTIR and theoretical DFT(B3LYP)/6-311++G(d,p) study of the photochemistry of sulfur analogues of alpha-pyrone [2H-thiopyran-2-one (TP) and 2H-pyran-2-thione (PT)] was carried out. The vibrational spectra of monomers of the compounds isolated in low-temperature argon matrixes were studied experimentally and assigned completely on the basis of theoretical calculations. UV irradiation (lambda > 337 nm) of the studied compounds isolated in low-temperature matrixes results mainly in the ring-opening reaction by means of the cleavage of the alpha-bond. Other photoprocesses, not involving the alpha-bond-cleavage step (such as generation of Dewar valence isomer), correspond to the minor reaction channels in both studied compounds. The ring-opening photoreaction in PT represents the first reported case of an alpha-bond cleavage in a compound with a C=S group attached to a six-membered ring, in which the internal strain practically does not exist, whereas the corresponding reaction in TP (a cleavage of a C-S bond in the alpha position with respect to a carbonyl group) is now reported for the first time. Following the ring-opening reactions, isomerization processes and intramolecular hydrogen shift reactions were observed, enabling production of TP from PT and vice versa. A detailed study of such processes was undertaken, and kinetical and mechanistical data are presented and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...