Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(19): e2315597121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38687786

ABSTRACT

Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The venom of African spitting cobras often causes permanent injury via tissue-destructive dermonecrosis at the bite site, which is ineffectively treated by current antivenoms. To address this therapeutic gap, we identified the etiological venom toxins in Naja nigricollis venom responsible for causing local dermonecrosis. While cytotoxic three-finger toxins were primarily responsible for causing spitting cobra cytotoxicity in cultured keratinocytes, their potentiation by phospholipases A2 toxins was essential to cause dermonecrosis in vivo. This evidence of probable toxin synergism suggests that a single toxin-family inhibiting drug could prevent local envenoming. We show that local injection with the repurposed phospholipase A2-inhibiting drug varespladib significantly prevents local tissue damage caused by several spitting cobra venoms in murine models of envenoming. Our findings therefore provide a therapeutic strategy that may effectively prevent life-changing morbidity caused by snakebite in rural Africa.


Subject(s)
Acetates , Elapid Venoms , Indoles , Keto Acids , Necrosis , Snake Bites , Animals , Snake Bites/drug therapy , Mice , Humans , Acrylamides/pharmacology , Phospholipases A2/metabolism , Naja , Elapidae , Keratinocytes/drug effects , Skin/drug effects , Skin/pathology , Drug Repositioning
2.
Sci Rep ; 13(1): 21662, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38066189

ABSTRACT

Snakebite envenoming is a global public health issue that causes significant morbidity and mortality, particularly in low-income regions of the world. The clinical manifestations of envenomings vary depending on the snake's venom, with paralysis, haemorrhage, and necrosis being the most common and medically relevant effects. To assess the efficacy of antivenoms against dermonecrosis, a preclinical testing approach involves in vivo mouse models that mimic local tissue effects of cytotoxic snakebites in humans. However, current methods for assessing necrosis severity are time-consuming and susceptible to human error. To address this, we present the Venom Induced Dermonecrosis Analysis tooL (VIDAL), a machine-learning-guided image-based solution that can automatically identify dermonecrotic lesions in mice, adjust for lighting biases, scale the image, extract lesion area and discolouration, and calculate the severity of dermonecrosis. We also introduce a new unit, the dermonecrotic unit (DnU), to better capture the complexity of dermonecrosis severity. Our tool is comparable to the performance of state-of-the-art histopathological analysis, making it an accessible, accurate, and reproducible method for assessing dermonecrosis in mice. Given the urgent need to address the neglected tropical disease that is snakebite, high-throughput technologies such as VIDAL are crucial in developing and validating new and existing therapeutics for this debilitating disease.


Subject(s)
Snake Bites , Venoms , Humans , Mice , Animals , Snake Bites/therapy , Antivenins/pharmacology , Global Health , Necrosis
3.
Nat Commun ; 14(1): 7812, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097534

ABSTRACT

Morbidity from snakebite envenoming affects approximately 400,000 people annually. Tissue damage at the bite-site often leaves victims with catastrophic life-long injuries and is largely untreatable by current antivenoms. Repurposed small molecule drugs that inhibit specific snake venom toxins show considerable promise for tackling this neglected tropical disease. Using human skin cell assays as an initial model for snakebite-induced dermonecrosis, we show that the drugs 2,3-dimercapto-1-propanesulfonic acid (DMPS), marimastat, and varespladib, alone or in combination, inhibit the cytotoxicity of a broad range of medically important snake venoms. Thereafter, using preclinical mouse models of dermonecrosis, we demonstrate that the dual therapeutic combinations of DMPS or marimastat with varespladib significantly inhibit the dermonecrotic activity of geographically distinct and medically important snake venoms, even when the drug combinations are delivered one hour after envenoming. These findings strongly support the future translation of repurposed drug combinations as broad-spectrum therapeutics for preventing morbidity caused by snakebite.


Subject(s)
Snake Bites , Mice , Humans , Animals , Snake Bites/drug therapy , Snake Venoms/toxicity , Snake Venoms/therapeutic use , Drug Combinations
4.
Toxicon ; 220: 106955, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36309071

ABSTRACT

Snakebite envenoming was reintroduced as a Category A Neglected Tropical Disease by the World Health Organization in 2017. Since then, increased attention has been directed towards this affliction and towards the development of a deeper understanding of how snake venoms exert their toxic effects and how antivenoms can counter them. However, most of our in vivo generated knowledge stems from the use of animal models which do not always accurately reflect how the pathogenic effects of snake venoms manifest in humans. Moreover, animal experiments are associated with pain, distress, and eventually animal sacrifice due to the toxic nature of snake venoms. Related to this, the implementation of the 3Rs principle (Replacement, Reduction, and Refinement) in the use of experimental animals in snakebite envenoming research is recommended by the World Health Organization. Therefore, more humane experimental designs and new in vitro/ex vivo alternatives for experimental animals are sought after. Here, we report the use of an organotypic model of human skin to further elucidate the pathophysiology of the dermonecrotic effects caused by the venom of the black-necked spitting cobra, Naja nigricollis, in humans. The goal of this study is to expand the repertoire of available models that can be used to study the local tissue damages induced by cytotoxic venoms.


Subject(s)
Snake Bites , Animals , Humans , Snake Bites/complications , Proteomics , Elapid Venoms/toxicity , Antivenins/pharmacology , Naja , Snake Venoms
5.
PLoS Negl Trop Dis ; 16(9): e0010496, 2022 09.
Article in English | MEDLINE | ID: mdl-36108067

ABSTRACT

BACKGROUND: Snakebite is a major public health concern in Eswatini, where treatment relies upon one antivenom-SAIMR Polyvalent. Although effective in treating snakebite, SAIMR Polyvalent is difficult to source outside its manufacturing country (South Africa) and is dauntingly expensive. We compared the preclinical venom-neutralising efficacy of two alternative antivenoms with that of SAIMR Polyvalent against the lethal and tissue-destructive effects of venoms from five species of medically important snakes using in vivo murine assays. The test antivenoms were 'Panafrican' manufactured by Instituto Clodomiro Picado and 'PANAF' manufactured by Premium Serums & Vaccines. PRINCIPAL FINDINGS: In vivo murine preclinical studies identified both test antivenoms were equally or more effective than SAIMR Polyvalent at neutralising lethal and tissue-destructive effects of Naja mossambica venom. Both test antivenoms were less effective than SAIMR Polyvalent at neutralising the lethal effects of Bitis arietans, Dendroaspis polylepis, Hemachatus haemachatus and Naja annulifera venoms, but similarly effective at neutralising tissue damage induced by B. arietans and H. haemachatus venoms. In vitro immunological assays identified that the titres and toxin-specificities of immunoglobulins (iGs) in the test antivenoms were comparable to that of SAIMR Polyvalent. Plasma clotting disturbances by H. haemachatus and N. mossambica were neutralised by the test antivenoms, whereas SAIMR Polyvalent failed to neutralise this bioactivity of N. mossambica venom. B. arietans SVMP activity was equally reduced by all three antivenoms, and H. haemachatus and N. mossambica PLA2 activities were neutralised by all three antivenoms. CONCLUSIONS: While both Panafrican and PANAF antivenoms exhibited promising preclinical efficacies, both were less poly-specifically effective than SAIMR Polyvalent in these murine assays. The efficacy of these antivenoms against the lethal and tissue-destructive effects of N. mossambica venom, the most common biting species in Eswatini, identify that Panafrican and PANAF antivenoms offer effective alternatives to SAIMR Polyvalent for the treatment of snakebite in Eswatini, and potentially for neighbouring countries.


Subject(s)
Snake Bites , Viperidae , Animals , Antivenins/pharmacology , Antivenins/therapeutic use , Eswatini , Mice , Phospholipases A2 , Snake Bites/drug therapy
6.
Sci Rep ; 12(1): 11328, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35790745

ABSTRACT

Antivenom is currently the first-choice treatment for snakebite envenoming. However, only a low proportion of antivenom immunoglobulins are specific to venom toxins, resulting in poor dose efficacy and potency. We sought to investigate whether linear venom epitopes displayed on virus like particles can stimulate an antibody response capable of recognising venom toxins from diverse medically important species. Bioinformatically-designed epitopes, corresponding to predicted conserved regions of group I phospholipase A2 and three finger toxins, were engineered for display on the surface of hepatitis B core antigen virus like particles and used to immunise female CD1 mice over a 14 weeks. Antibody responses to all venom epitope virus like particles were detectable by ELISA by the end of the immunisation period, although total antibody and epitope specific antibody titres were variable against the different epitope immunogens. Immunoblots using pooled sera demonstrated recognition of various venom components in a diverse panel of six elapid venoms, representing three continents and four genera. Insufficient antibody yields precluded a thorough assessment of the neutralising ability of the generated antibodies, however we were able to test polyclonal anti-PLA2 IgG from three animals against the PLA2 activity of Naja nigricollis venom, all of which showed no neutralising ability. This study demonstrates proof-of-principle that virus like particles engineered to display conserved toxin linear epitopes can elicit specific antibody responses in mice which are able to recognise a geographically broad range of elapid venoms.


Subject(s)
Antibody Formation , Toxins, Biological , Animals , Antivenins , Elapid Venoms/genetics , Epitopes , Female , Mice , Snake Venoms
7.
Toxins (Basel) ; 14(7)2022 06 29.
Article in English | MEDLINE | ID: mdl-35878181

ABSTRACT

Snakebite is a neglected tropical disease that causes high rates of global mortality and morbidity. Although snakebite can cause a variety of pathologies in victims, haemotoxic effects are particularly common and are typically characterised by haemorrhage and/or venom-induced consumption coagulopathy. Despite polyclonal antibody-based antivenoms being the mainstay life-saving therapy for snakebite, they are associated with limited cross-snake species efficacy, as there is often extensive toxin variation between snake venoms, including those used as immunogens for antivenom production. This restricts the therapeutic utility of any antivenom to certain geographical regions. In this study, we explored the feasibility of using recombinantly expressed toxins as immunogens to stimulate focused, pathology-specific, antibodies in order to broadly counteract specific toxins associated with snakebite envenoming. Three snake venom serine proteases (SVSP) toxins, sourced from geographically diverse and medically important viper snake venoms, were successfully expressed in HEK293F mammalian cells and used for murine immunisation. Analyses of the resulting antibody responses revealed that ancrod and RVV-V stimulated the strongest immune responses, and that experimental antivenoms directed against these recombinant SVSP toxins, and a mixture of the three different immunogens, extensively recognised and exhibited immunological binding towards a variety of native snake venoms. While the experimental antivenoms showed some reduction in abnormal clotting parameters stimulated by the toxin immunogens and crude venom, specifically reducing the depletion of fibrinogen levels and prolongation of prothrombin times, fibrinogen degradation experiments revealed that they broadly protected against venom- and toxin-induced fibrinogenolytic functional activities. Overall, our findings further strengthen the case for the use of recombinant venom toxins as supplemental immunogens to stimulate focused and desirable antibody responses capable of neutralising venom-induced pathological effects, and therefore potentially circumventing some of the limitations associated with current snakebite therapies.


Subject(s)
Antivenins , Snake Bites , Animals , Antivenins/therapeutic use , Fibrinogen , Mammals , Mice , Serine Proteases , Snake Bites/therapy , Snake Venoms/toxicity , Snakes , Viper Venoms/toxicity
9.
Toxicon X ; 14: 100118, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35321116

ABSTRACT

Snakebite envenoming affects more than 250,000 people annually in sub-Saharan Africa. Envenoming by Dispholidus typus (boomslang) results in venom-induced consumption coagulopathy (VICC), whereby highly abundant prothrombin-activating snake venom metalloproteinases (SVMPs) consume clotting factors and deplete fibrinogen. The only available treatment for D. typus envenoming is the monovalent SAIMR Boomslang antivenom. Treatment options are urgently required because this antivenom is often difficult to source and, at US$6000/vial, typically unaffordable for most snakebite patients. We therefore investigated the in vitro and in vivo preclinical efficacy of four SVMP inhibitors to neutralise the effects of D. typus venom; the matrix metalloproteinase inhibitors marimastat and prinomastat, and the metal chelators dimercaprol and DMPS. The venom of D. typus exhibited an SVMP-driven procoagulant phenotype in vitro. Marimastat and prinomastat demonstrated equipotent inhibition of the SVMP-mediated procoagulant activity of the venom in vitro, whereas dimercaprol and DMPS showed considerably lower potency. However, when tested in preclinical murine models of envenoming using mixed sex CD1 mice, DMPS and marimastat demonstrated partial protection against venom lethality, demonstrated by prolonged survival times of experimental animals, whereas dimercaprol and prinomastat failed to confer any protection at the doses tested. The preclinical results presented here demonstrate that DMPS and marimastat show potential as novel small molecule-based therapeutics for D. typus snakebite envenoming. These two drugs have been previously shown to be effective against Echis ocellatus VICC in preclinical models, and thus we conclude that marimastat and DMPS should be further explored as potentially valuable early intervention therapeutics to broadly treat VICC following snakebite envenoming in sub-Saharan Africa.

10.
PLoS Negl Trop Dis ; 15(8): e0009659, 2021 08.
Article in English | MEDLINE | ID: mdl-34407084

ABSTRACT

BACKGROUND: Snakebite is a neglected tropical disease that causes high global rates of mortality and morbidity. Although snakebite can cause a variety of pathologies in victims, haemotoxic effects are particularly common and are typically characterised by haemorrhage and/or venom-induced consumption coagulopathy. Antivenoms are the mainstay therapeutic for treating the toxic effects of snakebite, but despite saving thousands of lives annually, these therapies are associated with limited cross-snake species efficacy due to venom variation, which ultimately restricts their therapeutic utility to particular geographical regions. METHODOLOGY/PRINCIPAL FINDINGS: In this study we explored the feasibility of generating globally effective pathology-specific antivenoms to counteract the haemotoxic signs of snakebite envenoming. Two different immunogen mixtures, consisting of seven and twelve haemotoxic venoms sourced from geographically diverse and/or medically important snakes, were used to raise ovine polyclonal antibodies, prior to characterisation of their immunological binding characteristics and in vitro neutralisation profiles against each of the venoms. Despite variability of the immunogen mixtures, both experimental antivenoms exhibited broadly comparable in vitro venom binding and neutralisation profiles against the individual venom immunogens in immunological and functional assays. However, in vivo assessments using a murine preclinical model of antivenom efficacy revealed substantial differences in venom neutralisation. The experimental antivenom generated from the seven venom immunogen mixture outperformed the comparator, by providing protective effects against venom lethality caused by seven of the eight geographically diverse venoms tested, including three distinct venoms that were not used as immunogens to generate this antivenom. These findings suggest that a core set of venom immunogens may be sufficient to stimulate antibodies capable of broadly neutralising a geographically diverse array of haemotoxic snake venoms, and that adding additional venom immunogens may impact negatively on the dose efficacy of the resulting antivenom. CONCLUSIONS/SIGNIFICANCE: Although selection of appropriate immunogens that encapsulate venom toxin diversity without diluting antivenom potency remains challenging and further optimisation is required, the findings from this pilot study suggest that the generation of pathology-specific antivenoms with global utility is likely to feasible, thereby highlighting their promise as future modular treatments for the world's tropical snakebite victims.


Subject(s)
Antivenins/immunology , Antivenins/pharmacology , Snake Venoms/immunology , Snake Venoms/toxicity , Animals , Blood Coagulation Disorders/drug therapy , Cross Reactions , Disease Models, Animal , Hemorrhage/drug therapy , Male , Mice , Pilot Projects , Snake Bites/drug therapy , Snake Bites/immunology
11.
J Exp Biol ; 224(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-34424974

ABSTRACT

Venom spitting is a defence mechanism based on airborne venom delivery used by a number of different African and Asian elapid snake species ('spitting cobras'; Naja spp. and Hemachatus spp.). Adaptations underpinning venom spitting have been studied extensively at both behavioural and morphological level in cobras, but the role of the physical properties of venom itself in its effective projection remains largely unstudied. We hereby provide the first comparative study of the physical properties of venom in spitting and non-spitting cobras. We measured the viscosity, protein concentration and pH of the venom of 13 cobra species of the genus Naja from Africa and Asia, alongside the spitting elapid Hemachatus haemachatus and the non-spitting viper Bitis arietans. By using published microCT scans, we calculated the pressure required to eject venom through the fangs of a spitting and a non-spitting cobra. Despite the differences in the modes of venom delivery, we found no significant differences between spitters and non-spitters in the rheological and physical properties of the studied venoms. Furthermore, all analysed venoms showed a Newtonian flow behaviour, in contrast to previous reports. Although our results imply that the evolution of venom spitting did not significantly affect venom viscosity, our models of fang pressure suggests that the pressure requirements to eject venom are lower in spitting cobras than in non-spitting cobras.


Subject(s)
Elapid Venoms , Tooth , Africa , Animals , Elapidae
13.
J Exp Biol ; 224(Pt 7)2021 04 07.
Article in English | MEDLINE | ID: mdl-33827968

ABSTRACT

Venom spitting is a defence mechanism based on airborne venom delivery used by a number of different African and Asian elapid snake species ('spitting cobras'; Naja spp. and Hemachatus spp.). Adaptations underpinning venom spitting have been studied extensively at both behavioural and morphological level in cobras, but the role of the physical properties of venom itself in its effective projection remains largely unstudied. We hereby provide the first comparative study of the physical properties of venom in spitting and non-spitting cobras. We measured the viscosity, protein concentration and pH of the venom of 13 cobra species of the genus Naja from Africa and Asia, alongside the spitting elapid Hemachatus haemachatus and the non-spitting viper Bitis arietans By using published microCT scans, we calculated the pressure required to eject venom through the fangs of a spitting and a non-spitting cobra. Despite the differences in the modes of venom delivery, we found no significant differences between spitters and non-spitters in the rheological and physical properties of the studied venoms. Furthermore, all analysed venoms showed a Newtonian flow behaviour, in contrast to previous reports. Although our results imply that the evolution of venom spitting did not significantly affect venom viscosity, our models of fang pressure suggests that the pressure requirements to eject venom are lower in spitting cobras than in non-spitting cobras.


Subject(s)
Elapid Venoms , Tooth , Africa , Animals , Elapidae
14.
Nat Commun ; 11(1): 6094, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33323937

ABSTRACT

Snakebite is a medical emergency causing high mortality and morbidity in rural tropical communities that typically experience delayed access to unaffordable therapeutics. Viperid snakes are responsible for the majority of envenomings, but extensive interspecific variation in venom composition dictates that different antivenom treatments are used in different parts of the world, resulting in clinical and financial snakebite management challenges. Here, we show that a number of repurposed Phase 2-approved small molecules are capable of broadly neutralizing distinct viper venom bioactivities in vitro by inhibiting different enzymatic toxin families. Furthermore, using murine in vivo models of envenoming, we demonstrate that a single dose of a rationally-selected dual inhibitor combination consisting of marimastat and varespladib prevents murine lethality caused by venom from the most medically-important vipers of Africa, South Asia and Central America. Our findings support the translation of combinations of repurposed small molecule-based toxin inhibitors as broad-spectrum therapeutics for snakebite.


Subject(s)
Antivenins/administration & dosage , Antivenins/therapeutic use , Snake Bites/drug therapy , Animals , Asia , Benzamidines , Central America , Dimercaprol/pharmacology , Dimercaprol/therapeutic use , Disease Models, Animal , Drug Combinations , Drug Evaluation, Preclinical , Guanidines , Kaplan-Meier Estimate , Male , Mice , Neutralization Tests , Serine Proteases/drug effects , Toxins, Biological , Viper Venoms
15.
Sci Transl Med ; 12(542)2020 05 06.
Article in English | MEDLINE | ID: mdl-32376771

ABSTRACT

Snakebite envenoming causes 138,000 deaths annually, and ~400,000 victims are left with permanent disabilities. Envenoming by saw-scaled vipers (Viperidae: Echis) leads to systemic hemorrhage and coagulopathy and represents a major cause of snakebite mortality and morbidity in Africa and Asia. The only specific treatment for snakebite, antivenom, has poor specificity and low affordability and must be administered in clinical settings because of its intravenous delivery and high rates of adverse reactions. This requirement results in major treatment delays in resource-poor regions and substantially affects patient outcomes after envenoming. Here, we investigated the value of metal ion chelators as prehospital therapeutics for snakebite. Among the tested chelators, dimercaprol (British anti-Lewisite) and its derivative 2,3-dimercapto-1-propanesulfonic acid (DMPS) were found to potently antagonize the activity of Zn2+-dependent snake venom metalloproteinases in vitro. Moreover, DMPS prolonged or conferred complete survival in murine preclinical models of envenoming against a variety of saw-scaled viper venoms. DMPS also considerably extended survival in a "challenge and treat" model, where drug administration was delayed after venom injection and the oral administration of this chelator provided partial protection against envenoming. Last, the potential clinical scenario of early oral DMPS therapy combined with a delayed, intravenous dose of conventional antivenom provided prolonged protection against the lethal effects of envenoming in vivo. Our findings demonstrate that the safe and affordable repurposed metal chelator DMPS can effectively neutralize saw-scaled viper venoms in vitro and in vivo and highlight the promise of this drug as an early, prehospital, therapeutic intervention for hemotoxic snakebite envenoming.


Subject(s)
Snake Bites , Africa , Animals , Asia , Chelating Agents/therapeutic use , Humans , Mice , Snake Bites/drug therapy , Viper Venoms
SELECTION OF CITATIONS
SEARCH DETAIL
...