Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 31(19): 3281-3289, 2022 09 29.
Article in English | MEDLINE | ID: mdl-35567544

ABSTRACT

A disproportionate tall stature is the most evident manifestation in Marfan syndrome (MFS), a multisystem condition caused by mutations in the extracellular protein and TGFß modulator, fibrillin-1. Unlike cardiovascular manifestations, there has been little effort devoted to unravel the molecular mechanism responsible for long bone overgrowth in MFS. By combining the Cre-LoxP recombination system with metatarsal bone cultures, here we identify the outer layer of the perichondrium as the tissue responsible for long bone overgrowth in MFS mice. Analyses of differentially expressed genes in the fibrillin-1-deficient perichondrium predicted that loss of TGFß signaling may influence chondrogenesis in the neighboring epiphyseal growth plate (GP). Immunohistochemistry revealed that fibrillin-1 deficiency in the outer perichondrium is associated with decreased accumulation of latent TGFß-binding proteins (LTBPs)-3 and -4, and reduced levels of phosphorylated (activated) Smad2. Consistent with these findings, mutant metatarsal bones grown in vitro were longer and released less TGFß than the wild-type counterparts. Moreover, addition of recombinant TGFß1 normalized linear growth of mutant metatarsal bones. We conclude that longitudinal bone overgrowth in MFS is accounted for by diminished sequestration of LTBP-3 and LTBP-4 into the fibrillin-1-deficient matrix of the outer perichondrium, which results in less TGFß signaling locally and improper GP differentiation distally.


Subject(s)
Marfan Syndrome , Animals , Fibrillin-1/genetics , Fibrillin-2 , Fibrillins , Latent TGF-beta Binding Proteins/genetics , Latent TGF-beta Binding Proteins/metabolism , Marfan Syndrome/genetics , Mice , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
2.
Arterioscler Thromb Vasc Biol ; 41(9): 2483-2493, 2021 09.
Article in English | MEDLINE | ID: mdl-34320838

ABSTRACT

Objective: Despite considerable research, the goal of finding nonsurgical remedies against thoracic aortic aneurysm and acute aortic dissection remains elusive. We sought to identify a novel aortic PK (protein kinase) that can be pharmacologically targeted to mitigate aneurysmal disease in a well-established mouse model of early-onset progressively severe Marfan syndrome (MFS). Approach and Results: Computational analyses of transcriptomic data derived from the ascending aorta of MFS mice predicted a probable association between thoracic aortic aneurysm and acute aortic dissection development and the multifunctional, stress-activated HIPK2 (homeodomain-interacting protein kinase 2). Consistent with this prediction, Hipk2 gene inactivation significantly extended the survival of MFS mice by slowing aneurysm growth and delaying transmural rupture. HIPK2 also ranked among the top predicted PKs in computational analyses of DEGs (differentially expressed genes) in the dilated aorta of 3 MFS patients, which strengthened the clinical relevance of the experimental finding. Additional in silico analyses of the human and mouse data sets identified the TGF (transforming growth factor)-ß/Smad3 signaling pathway as a potential target of HIPK2 in the MFS aorta. Chronic treatment of MFS mice with an allosteric inhibitor of HIPK2-mediated stimulation of Smad3 signaling validated this prediction by mitigating thoracic aortic aneurysm and acute aortic dissection pathology and partially improving aortic material stiffness. Conclusions: HIPK2 is a previously unrecognized determinant of aneurysmal disease and an attractive new target for antithoracic aortic aneurysm and acute aortic dissection multidrug therapy.


Subject(s)
Aorta, Thoracic/drug effects , Aortic Aneurysm, Thoracic/prevention & control , Aortic Dissection/prevention & control , Fibrillin-1/genetics , Marfan Syndrome/genetics , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Vascular Remodeling/drug effects , Adult , Aortic Dissection/enzymology , Aortic Dissection/genetics , Aortic Dissection/pathology , Animals , Aorta, Thoracic/enzymology , Aorta, Thoracic/pathology , Aortic Aneurysm, Thoracic/enzymology , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/pathology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Dilatation, Pathologic , Disease Models, Animal , Disease Progression , Humans , Male , Marfan Syndrome/complications , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Severity of Illness Index , Signal Transduction , Smad3 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...