Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2806, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561380

ABSTRACT

Although heterogeneity of FAP+ Cancer-Associated Fibroblasts (CAF) has been described in breast cancer, their plasticity and spatial distribution remain poorly understood. Here, we analyze trajectory inference, deconvolute spatial transcriptomics at single-cell level and perform functional assays to generate a high-resolution integrated map of breast cancer (BC), with a focus on inflammatory and myofibroblastic (iCAF/myCAF) FAP+ CAF clusters. We identify 10 spatially-organized FAP+ CAF-related cellular niches, called EcoCellTypes, which are differentially localized within tumors. Consistent with their spatial organization, cancer cells drive the transition of detoxification-associated iCAF (Detox-iCAF) towards immunosuppressive extracellular matrix (ECM)-producing myCAF (ECM-myCAF) via a DPP4- and YAP-dependent mechanism. In turn, ECM-myCAF polarize TREM2+ macrophages, regulatory NK and T cells to induce immunosuppressive EcoCellTypes, while Detox-iCAF are associated with FOLR2+ macrophages in an immuno-protective EcoCellType. FAP+ CAF subpopulations accumulate differently according to the invasive BC status and predict invasive recurrence of ductal carcinoma in situ (DCIS), which could help in identifying low-risk DCIS patients eligible for therapeutic de-escalation.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Carcinoma, Intraductal, Noninfiltrating , Folate Receptor 2 , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , Fibroblasts/pathology , Cancer-Associated Fibroblasts/pathology , Extracellular Matrix/pathology , Tumor Microenvironment
2.
Nat Commun ; 15(1): 1312, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38346978

ABSTRACT

Although cancer-associated fibroblast (CAF) heterogeneity is well-established, the impact of chemotherapy on CAF populations remains poorly understood. Here we address this question in high-grade serous ovarian cancer (HGSOC), in which we previously identified 4 CAF populations. While the global content in stroma increases in HGSOC after chemotherapy, the proportion of FAP+ CAF (also called CAF-S1) decreases. Still, maintenance of high residual CAF-S1 content after chemotherapy is associated with reduced CD8+ T lymphocyte density and poor patient prognosis, emphasizing the importance of CAF-S1 reduction upon treatment. Single cell analysis, spatial transcriptomics and immunohistochemistry reveal that the content in the ECM-producing ANTXR1+ CAF-S1 cluster (ECM-myCAF) is the most affected by chemotherapy. Moreover, functional assays demonstrate that ECM-myCAF isolated from HGSOC reduce CD8+ T-cell cytotoxicity through a Yes Associated Protein 1 (YAP1)-dependent mechanism. Thus, efficient inhibition after treatment of YAP1-signaling pathway in the ECM-myCAF cluster could enhance CD8+ T-cell cytotoxicity. Altogether, these data pave the way for therapy targeting YAP1 in ECM-myCAF in HGSOC.


Subject(s)
Cancer-Associated Fibroblasts , Ovarian Neoplasms , Female , Humans , Cancer-Associated Fibroblasts/metabolism , Microfilament Proteins/metabolism , Myofibroblasts/metabolism , Ovarian Neoplasms/pathology , Ovary/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction , Tumor Microenvironment
3.
Nat Commun ; 15(1): 743, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272907

ABSTRACT

Chronic kidney disease (CKD) is a public health problem driven by myofibroblast accumulation, leading to interstitial fibrosis. Heterogeneity is a recently recognized characteristic in kidney fibroblasts in CKD, but the role of different populations is still unclear. Here, we characterize a proinflammatory fibroblast population (named CXCL-iFibro), which corresponds to an early state of myofibroblast differentiation in CKD. We demonstrate that CXCL-iFibro co-localize with macrophages in the kidney and participate in their attraction, accumulation, and switch into FOLR2+ macrophages from early CKD stages on. In vitro, macrophages promote the switch of CXCL-iFibro into ECM-secreting myofibroblasts through a WNT/ß-catenin-dependent pathway, thereby suggesting a reciprocal crosstalk between these populations of fibroblasts and macrophages. Finally, the detection of CXCL-iFibro at early stages of CKD is predictive of poor patient prognosis, which shows that the CXCL-iFibro population is an early player in CKD progression and demonstrates the clinical relevance of our findings.


Subject(s)
Folate Receptor 2 , Renal Insufficiency, Chronic , Humans , Kidney/pathology , Renal Insufficiency, Chronic/pathology , Fibroblasts/metabolism , Myofibroblasts/metabolism , Fibrosis , Macrophages/metabolism , Folate Receptor 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...