Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Mech Behav Biomed Mater ; 151: 106412, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262183

ABSTRACT

Spinal cord injuries (SCIs) can arise from compression loading when a vertebra fractures and bone fragments are pushed into the spinal canal. Experimental studies have demonstrated the importance of both fracture initiation and post-fracture response in the investigation of vertebral fractures and spinal canal occlusion resulting from compression. Finite element models, such as the Global Human Body Models Consortium (GHBMC) model, focused on predicting the initiation location of fractures using element erosion to model hard tissue fracture. However, the element erosion method resulted in a loss of material and structural support during compression, which limited the ability of the model to predict the post-fracture response. The current study aimed to improve the post-fracture response by combining strain-based element erosion with smoothed particle hydrodynamics (SPH) to preserve the volume of the trabecular bone during compression fracture. The proposed implementation was evaluated using a model comprising two functional spinal units (FSUs) (C5-C6-C7) extracted from the GHBMC 50th percentile male model, and loaded under central compression. The original and enhanced models were compared to experimental force-displacement data and measured occlusion of the spinal canal. The enhanced model with SPH improved the shape and magnitude of the force-displacement response to be in good agreement with the experimental data. In contrast to the original model, the enhanced SPH model demonstrated occlusion on the same order of magnitude as reported in the experiments. The SPH implementation improved the post-fracture response by representing the damaged material post-fracture, providing structural support throughout compression loading and material flow leading to occlusion.


Subject(s)
Spinal Fractures , Male , Humans , Spinal Fractures/diagnostic imaging , Finite Element Analysis , Hydrodynamics , Cervical Vertebrae/diagnostic imaging , Spine , Biomechanical Phenomena
2.
Comput Methods Biomech Biomed Engin ; 26(10): 1208-1219, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35980145

ABSTRACT

The aged population has been associated with an increased risk of injury in car-crash, creating a critical need for improved assessment of safety systems. Finite element human body models (HBMs) have been proposed, but require representative geometry of the aged population and high mesh quality. A new hybrid Morphing-CAD methodology was applied to a 26-year-old (YO) 5th percentile female model to create average 75YO and subject-specific 86YO HBMs. The method achieved accurate morphing targets while retaining high mesh quality. The three HBMs were integrated into a side sled impact test demonstrating similar kinematic response but differing rib fracture patterns.


Subject(s)
Accidents, Traffic , Human Body , Humans , Female , Aged , Adult , Models, Biological , Finite Element Analysis , Biomechanical Phenomena
3.
Front Bioeng Biotechnol ; 10: 1022506, 2022.
Article in English | MEDLINE | ID: mdl-36324891

ABSTRACT

A primary objective of finite element human body models (HBMs) is to predict response and injury risk in impact scenarios, including cortical bone fracture initiation, fracture pattern, and the potential to simulate post-fracture injury to underlying soft tissues. Current HBMs have been challenged to predict the onset of failure and bone fracture patterns owing to the use of simplified failure criteria. In the present study, a continuum damage mechanics (CDM) model, incorporating observed mechanical response (orthotropy, asymmetry, damage), was coupled to a novel phenomenological effective strain fracture criterion based on stress triaxiality and investigated to predict cortical bone response under different modes of loading. Three loading cases were assessed: a coupon level notched shear test, whole bone femur three-point bending, and whole bone femur axial torsion. The proposed material model and fracture criterion were able to predict both the fracture initiation and location, and the fracture pattern for whole bone and specimen level tests, within the variability of the reported experiments. There was a dependence of fracture threshold on finite element mesh size, where higher mesh density produced similar but more refined fracture patterns compared to coarser meshes. Importantly, the model was functional, accurate, and numerically stable even for relatively coarse mesh sizes used in contemporary HBMs. The proposed model and novel fracture criterion enable prediction of fracture initiation and resulting fracture pattern in cortical bone such that post-fracture response can be investigated in HBMs.

4.
Front Bioeng Biotechnol ; 9: 681134, 2021.
Article in English | MEDLINE | ID: mdl-34621726

ABSTRACT

The increased incidence of injury demonstrated in epidemiological data for the elderly population, and females compared to males, has not been fully understood in the context of the biomechanical response to impact. A contributing factor to these differences in injury risk could be the variation in geometry between young and aged persons and between males and females. In this study, a new methodology, coupling a CAD and a repositioning software, was developed to reposture an existing Finite element neck while retaining a high level of mesh quality. A 5th percentile female aged neck model (F0575YO) and a 50th percentile male aged neck model (M5075YO) were developed from existing young (F0526YO and M5026YO) neck models (Global Human Body Models Consortium v5.1). The aged neck models included an increased cervical lordosis and an increase in the facet joint angles, as reported in the literature. The young and the aged models were simulated in frontal (2, 8, and 15 g) and rear (3, 7, and 10 g) impacts. The responses were compared using head and relative facet joint kinematics, and nominal intervertebral disc shear strain. In general, the aged models predicted higher tissue deformations, although the head kinematics were similar for all models. In the frontal impact, only the M5075YO model predicted hard tissue failure, attributed to the combined effect of the more anteriorly located head with age, when compared to the M5026YO, and greater neck length relative to the female models. In the rear impacts, the F0575YO model predicted higher relative facet joint shear compared to the F0526YO, and higher relative facet joint rotation and nominal intervertebral disc strain compared to the M5075YO. When comparing the male models, the relative facet joint kinematics predicted by the M5026YO and M5075YO were similar. The contrast in response between the male and female models in the rear impacts was attributed to the higher lordosis and facet angle in females compared to males. Epidemiological data reported that females were more likely to sustain Whiplash Associated Disorders in rear impacts compared to males, and that injury risk increases with age, in agreement with the findings in the present study. This study demonstrated that, although the increased lordosis and facet angle did not affect the head kinematics, changes at the tissue level were considerable (e.g., 26% higher relative facet shear in the female neck compared to the male, for rear impact) and relatable to the epidemiology. Future work will investigate tissue damage and failure through the incorporation of aged material properties and muscle activation.

5.
J Biomech ; 123: 110528, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34082236

ABSTRACT

Finite element human neck models (NMs) aim to predict neck response and injury at the tissue level; however, contemporary models are most often assessed using global response such as head kinematics. Additionally, many NMs are developed from subject-specific imaging with limited soft tissue resolution in small structures such as the facet joints in the neck. Such details may be critical to enable NMs to predict tissue-level response. In the present study, the capsular joint cartilage (CJC) geometry in a contemporary NM was enhanced (M50-CJC) based on literature data. The M50-CJC was validated at the segment and full neck levels and assessed using relative facet joint kinematics (FJK), capsular ligament (CL) and intervertebral disc (IVD) strains, a relative vertebral rotation assessment (IV-NIC) and head kinematics in frontal and rear impact. The validation ratings at the segment level increased from 0.60 to 0.64, with improvements for modes of deformation associated with the facet joints, while no difference was noted at the head kinematic level. The improved CJC led to increased FJK rotation (188%) and IVD strain (152.2%,) attributed to the reduced facet joint gap. Further enhancements of the capsular joint representation or a link between the FJK and CL injury risk are recommended. Enhancements at the tissue level demonstrated a large effect on the IVD strain, but were not apparent in global metrics such as head kinematics. This study demonstrated that a biofidelic and detailed geometrical representation of the CJC contributes significantly to the predicted joint response, which is critical to investigate neck injury risk at the tissue level.


Subject(s)
Intervertebral Disc , Zygapophyseal Joint , Accidents, Traffic , Biomechanical Phenomena , Cervical Vertebrae , Finite Element Analysis , Humans , Models, Biological , Zygapophyseal Joint/diagnostic imaging
6.
J Biomech Eng ; 143(6)2021 06 01.
Article in English | MEDLINE | ID: mdl-33537737

ABSTRACT

The cervical spine experiences shear forces during everyday activities and injurious events yet there is a paucity of biomechanical data characterizing the cervical spine under shear loading. This study aimed to (1) characterize load transmission paths and kinematics of the subaxial cervical spine under shear loading, and (2) assess a contemporary finite element cervical spine model using this data. Subaxial functional spinal units (FSUs) were subjected to anterior, posterior, and lateral shear forces (200 N) applied with and without superimposed axial compression preload (200 N) while monitoring spine kinematics. Load transmission paths were identified using strain gauges on the anterior vertebral body and lateral masses and a disc pressure sensor. Experimental conditions were simulated with cervical spine finite element model FSUs (GHBMC M50 version 5.0). The mean kinematics, vertebral strains, and disc pressures were compared to experimental results. The shear force-displacement response typically demonstrated a toe region followed by a linear response, with higher stiffness in anterior shear relative to lateral and posterior shear. Compressive axial preload decreased posterior and lateral shear stiffness and increased initial anterior shear stiffness. Load transmission patterns and kinematics suggest the facet joints play a key role in limiting anterior shear while the disc governs motion in posterior shear. The main cervical spine shear responses and trends are faithfully predicted by the GHBMC cervical spine model. These basic cervical spine biomechanics and the computational model can provide insight into mechanisms for facet dislocation in high severity impacts, and tissue distraction in low severity impacts.


Subject(s)
Cervical Vertebrae
7.
J Biomech Eng ; 143(3)2021 03 01.
Article in English | MEDLINE | ID: mdl-33009546

ABSTRACT

Nonperforating ballistic impacts on thoracic armor can cause blunt injuries, known as behind-armor blunt trauma (BABT). To evaluate the potential for this injury, the back face deformation (BFD) imprinted into a clay backing is measured; however, the link between BFD and potential for injury is uncertain. Computational human body models (HBMs) have the potential to provide an improved understanding of BABT injury risk to inform armor design but require assessment with relevant loading scenarios. In this study, a methodology was developed to apply BABT loading to a computational thorax model, enhanced with refined finite element mesh and high-deformation rate mechanical properties. The model was assessed using an epidemiological BABT survivor database. BABT impact boundary conditions for 10 cases from the database were recreated using experimentally measured deformation for specific armor/projectile combinations, and applied to the thorax model using a novel prescribed displacement methodology. The computational thorax model demonstrated numerical stability under BABT impact conditions. The predicted number of rib fractures, the magnitude of pulmonary contusion, and injury rank, increased with armor BFD, back face velocity, and input energy to the thorax. In three of the 10 cases, the model overpredicted the number of rib fractures, attributed to impact location positional sensitivity and limited details from the database. The integration of an HBM with the BABT loading method predicted rib fractures and injury ranks that were in good agreement with available medical records, providing a potential tool for future armor evaluation and injury assessment.


Subject(s)
Wounds, Nonpenetrating , Finite Element Analysis
8.
Ann Biomed Eng ; 48(1): 121-132, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31549326

ABSTRACT

Head injury in contact sports can be mitigated, in part, through the enhancement of protective helmets that may be enabled by detailed finite element models. However, many contemporary helmet FE models include simplified geometry and material properties and have limited verification and validation over a representative range of impact conditions. To address these limitations, a detailed numerical model of a modern football helmet was developed, integrated with two headforms and assessed for 60 impact conditions with excellent ratings (0.79-0.93). The strain energy of the helmet components was investigated for eight impact locations and three impact speeds. In general, the helmet shell had the highest strain energy followed by the compression shocks; however, the facemask and straps had the highest strain energy for impacts involving the facemask. The component strain energy was positively correlated with the Head Injury Criterion, while the strain energy was not strongly correlated with the Brain Injury Criterion due to the dependence on rotational kinematics. This study demonstrated the applicability of a detailed football helmet finite element model to investigate a range of impact conditions and to assess energy distribution as a function of impact location and severity as a means of future helmet optimization.


Subject(s)
Finite Element Analysis , Football , Head Protective Devices , Models, Theoretical , Sports Equipment , Biomechanical Phenomena , Head/physiology , Reproducibility of Results
9.
J Mech Behav Biomed Mater ; 100: 103400, 2019 12.
Article in English | MEDLINE | ID: mdl-31476553

ABSTRACT

Studies investigating mild Traumatic Brain Injury (mTBI) in the military population using experimental head surrogates and Finite Element (FE) head models have demonstrated the existence of transient negative pressures occurring within the head at the contrecoup location to the blast wave impingement. It has been hypothesized that this negative pressure may cause cavitation of cerebrospinal fluid (CSF) and possibly lead to brain tissue damage from cavitation bubble collapse. The cavitation pressure threshold of human CSF is presently unknown, although existing FE studies in the literature have assumed a value of -100 kPa. In the present study, the cavitation threshold of degassed porcine CSF at body temperature (37 °C) was measured using a unique modified Polymeric Split Hopkinson Pressure Bar apparatus, and compared to thresholds of distilled water at various conditions. The loading pulse generated in the apparatus was comparable to experimentally measured pressures resulting from blast exposure, and those predicted by an FE model. The occurrence of cavitation was identified using high-speed imaging and the corresponding pressures were determined using a computational model of the apparatus that was previously developed and validated. The probability of cavitation was calculated (ISO/TS, 18506) from forty-one experimental tests on porcine CSF, representing an upper bound for in vivo CSF. The 50% probability of cavitation for CSF (-0.467 MPa ±â€¯7%) was lower than that of distilled water (-1.37 MPa ±â€¯16%) under the same conditions. The lesser threshold of CSF could be related to the constituents such as blood cells and proteins. The results of this study can be used to inform FE head models subjected to blast exposure and improve prediction of the potential for CSF cavitation and response of brain tissue.


Subject(s)
Blast Injuries/physiopathology , Cerebrospinal Fluid/chemistry , Craniocerebral Trauma/physiopathology , Head/physiopathology , Polymers/chemistry , Animals , Brain Injuries, Traumatic/physiopathology , Computer Simulation , Finite Element Analysis , Male , Pressure , Probability , Swine , Temperature
10.
J Biomech ; 92: 84-91, 2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31151795

ABSTRACT

In both finite element and physical surrogate models of head blast injury, accurate material properties of the brain and/or tissue simulants are necessary to ensure biofidelity in predicted response. Thus, there is a need for experimental comparisons between tissue and simulant materials under the same experimental conditions. This study compares the response of porcine brain tissue and a variety of brain tissue simulants in quasi-static and sinusoidal compression tests. Fresh porcine brain tissue was obtained from a local abattoir and tested within 4 h post mortem. Additionally, the effect of post mortem time was investigated by comparing samples stored at room temperature and stored frozen (-18 °C), at various time intervals. The brain tissue simulants tested were bovine gelatin (3%, 5%, and 10% concentration), agarose gelatin (e0.4%, 0.6%, 0.8% concentration), and Sylgard 527. The experiments were performed using a DMA apparatus (TA Instruments Q800). The quasi-static compression data were fit to Ogden hyperelastic functions so that parameters could be compared. It was found that bovine gelatin at 3% and 5% concentration demonstrated the closest response to brain tissue in quasi-static compression. Conversely, in sinusoidal compression, the agarose gel and Sylgard 527 were found to be in closer agreement with the tissue, than bovine gel. In terms of post mortem time and storage, there was no statistically significant difference detected in the response of tissue samples after 48 h, regardless of storage method. However, samples stored at room temperature after 48 h appeared to demonstrate a reduction in stiffness.


Subject(s)
Artificial Organs , Brain/physiology , Animals , Cattle , Gelatin , Pressure , Sepharose , Stress, Mechanical , Swine
11.
J Mech Behav Biomed Mater ; 87: 213-229, 2018 11.
Article in English | MEDLINE | ID: mdl-30081355

ABSTRACT

Modeling of cortical bone response and failure is critical for the prediction of Crash Induced Injuries (CII) using advanced finite element (FE) Human Body Models (HBM). Although cortical bone is anisotropic and asymmetric in tension and compression, current HBM often utilize simple isotropic, symmetric, elastic-plastic constitutive models. In this study, a 50th percentile male femur FE model was used to quantify the effect of asymmetry and anisotropy in three-point bending and axial torsion. A complete set of cortical bone mechanical properties was identified from a literature review, and the femur model was used to investigate the importance of material asymmetry and anisotropy on the failure load/moment, failure displacement/rotation and fracture pattern. All models were able to predict failure load in bending, since this was dominated by the cortical bone material tensile response. However, only the orthotropic model was able to predict the torsional response and failure moment. Only the orthotropic model predicted the fracture initiation location and fracture pattern in bending, and the fracture initiation location in torsion; however, the anticipated spiral fracture pattern was not predicted by the models for torsional loading. The results demonstrated that asymmetry did not significantly improve the prediction capability, and that orthotropic material model with the identified material properties was able to predict the kinetics and kinematics for both three-point bending and axial torsion. This will help to provide an improved method for modeling hard tissue response and failure in full HBM.


Subject(s)
Cortical Bone , Femur , Fractures, Bone , Mechanical Phenomena , Models, Biological , Rotation , Anisotropy , Finite Element Analysis , Humans , Materials Testing , Torque
SELECTION OF CITATIONS
SEARCH DETAIL
...