Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 100: 129630, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38307441

ABSTRACT

A series of macrocyclic PKCθ inhibitors based on a 1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one hinge binder has been studied. Different aromatic and heteroaromatic substituents have been explored in order to optimize potency, isoform selectivity as well as DMPK properties. The importance of the length of the macrocyclic linker has also been analyzed. In particular, it has been found that methyl substitutions on the linker can have a profound influence on both potency and metabolic stability. Several compounds showing very good profiles, suitable for in vivo testing, are disclosed.

2.
J Med Chem ; 64(14): 10230-10245, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34228444

ABSTRACT

Proteasomes are broadly expressed key components of the ubiquitin-dependent protein degradation pathway containing catalytically active subunits (ß1, ß2, and ß5). LMP7 (ß5i) is a subunit of the immunoproteasome, an inducible isoform that is predominantly expressed in hematopoietic cells. Clinically effective pan-proteasome inhibitors for the treatment of multiple myeloma (MM) nonselectively target LMP7 and other subunits of the constitutive proteasome and immunoproteasome with comparable potency, which can limit the therapeutic applicability of these drugs. Here, we describe the discovery and structure-based hit optimization of novel amido boronic acids, which selectively inhibit LMP7 while sparing all other subunits. The exploitation of structural differences between the proteasome subunits culminated in the identification of the highly potent, exquisitely selective, and orally available LMP7 inhibitor 50 (M3258). Based on the strong antitumor activity observed with M3258 in MM models and a favorable preclinical data package, a phase I clinical trial was initiated in relapsed/refractory MM patients.


Subject(s)
Drug Discovery , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Dose-Response Relationship, Drug , Humans , Molecular Structure , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/chemistry , Protein Subunits/antagonists & inhibitors , Protein Subunits/metabolism , Structure-Activity Relationship
3.
Cancer Immunol Res ; 8(1): 32-45, 2020 01.
Article in English | MEDLINE | ID: mdl-31806638

ABSTRACT

Tryptophan 2,3-dioxygenase (TDO) is an enzyme that degrades tryptophan into kynurenine and thereby induces immunosuppression. Like indoleamine 2,3-dioxygenase (IDO1), TDO is considered as a relevant drug target to improve the efficacy of cancer immunotherapy. However, its role in various immunotherapy settings has not been fully characterized. Here, we described a new small-molecule inhibitor of TDO that can modulate kynurenine and tryptophan in plasma, liver, and tumor tissue upon oral administration. We showed that this compound improved the ability of anti-CTLA4 to induce rejection of CT26 tumors expressing TDO. To better characterize TDO as a therapeutic target, we used TDO-KO mice and found that anti-CTLA4 or anti-PD1 induced rejection of MC38 tumors in TDO-KO, but not in wild-type mice. As MC38 tumors did not express TDO, we related this result to the high systemic tryptophan levels in TDO-KO mice, which lack the hepatic TDO needed to contain blood tryptophan. The antitumor effectiveness of anti-PD1 was abolished in TDO-KO mice fed on a tryptophan-low diet that normalized their blood tryptophan level. MC38 tumors expressed IDO1, which could have limited the efficacy of anti-PD1 in wild-type mice and could have been overcome in TDO-KO mice due to the high levels of tryptophan. Accordingly, treatment of mice with an IDO1 inhibitor improved the efficacy of anti-PD1 in wild-type, but not in TDO-KO, mice. These results support the clinical development of TDO inhibitors to increase the efficacy of immunotherapy of TDO-expressing tumors and suggest their effectiveness even in the absence of tumoral TDO expression.See article by Hoffmann et al., p. 19.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , CTLA-4 Antigen/antagonists & inhibitors , Colonic Neoplasms/drug therapy , Enzyme Inhibitors/pharmacology , Neoplasms, Experimental/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tryptophan Oxygenase/antagonists & inhibitors , Animals , CTLA-4 Antigen/immunology , Cell Line, Tumor , Colonic Neoplasms/enzymology , Colonic Neoplasms/immunology , Drug Synergism , Humans , Kynurenine/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Neoplasms, Experimental/enzymology , Neoplasms, Experimental/immunology , Programmed Cell Death 1 Receptor/immunology , Small Molecule Libraries/pharmacology , Tryptophan/metabolism , Tryptophan Oxygenase/immunology
4.
Mol Cancer Ther ; 17(12): 2530-2542, 2018 12.
Article in English | MEDLINE | ID: mdl-30232146

ABSTRACT

Tumors use indoleamine 2,3-dioxygenase-1 (IDO1) as a major mechanism to induce an immunosuppressive microenvironment. IDO1 expression is upregulated in many cancers and considered to be a resistance mechanism to immune checkpoint therapies. IDO1 is induced in response to inflammatory stimuli such as IFNγ and promotes immune tolerance by depleting tryptophan and producing tryptophan catabolites, including kynurenine, in the tumor microenvironment. This leads to effector T-cell anergy and enhanced Treg function through upregulation of FoxP3. As a nexus for the induction of key immunosuppressive mechanisms, IDO1 represents an important immunotherapeutic target in oncology. Here, we report the identification and characterization of the novel selective, orally bioavailable IDO1 inhibitor EOS200271/PF-06840003. It reversed IDO1-induced T-cell anergy in vitro In mice carrying syngeneic tumor grafts, PF-06840003 reduced intratumoral kynurenine levels by over 80% and inhibited tumor growth both in monotherapy and, with an increased efficacy, in combination with antibodies blocking the immune checkpoint ligand PD-L1. We demonstrate that anti-PD-L1 therapy results in increased IDO1 metabolic activity thereby providing additional mechanistic rationale for combining PD-(L)1 blockade with IDO1 inhibition in cancer immunotherapies. Supported by these preclinical data and favorable predicted human pharmacokinetic properties of PF-06840003, a phase I open-label, multicenter clinical study (NCT02764151) has been initiated.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Biocatalysis , Enzyme Inhibitors/pharmacology , Immunotherapy , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoles/pharmacology , Succinimides/pharmacology , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized , Antineoplastic Agents/pharmacology , B7-H1 Antigen/metabolism , CTLA-4 Antigen/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon-gamma/metabolism , Kynurenine/blood , Lymphocytes, Tumor-Infiltrating/drug effects , Mice, Inbred BALB C , Mice, Inbred C57BL , Stereoisomerism , Substrate Specificity/drug effects , T-Lymphocytes/cytology , T-Lymphocytes/drug effects
5.
J Med Chem ; 60(23): 9617-9629, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29111717

ABSTRACT

Tumors use tryptophan-catabolizing enzymes such as indoleamine 2,3-dioxygenase (IDO-1) to induce an immunosuppressive environment. IDO-1 is induced in response to inflammatory stimuli and promotes immune tolerance through effector T-cell anergy and enhanced Treg function. As such, IDO-1 is a nexus for the induction of a key immunosuppressive mechanism and represents an important immunotherapeutic target in oncology. Starting from HTS hit 5, IDO-1 inhibitor 6 (EOS200271/PF-06840003) has been developed. The structure-activity relationship around 6 is described and rationalized using the X-ray crystal structure of 6 bound to human IDO-1, which shows that 6, differently from most of the IDO-1 inhibitors described so far, does not bind to the heme iron atom and has a novel binding mode. Clinical candidate 6 shows good potency in an IDO-1 human whole blood assay and also shows a very favorable ADME profile leading to favorable predicted human pharmacokinetic properties, including a predicted half-life of 16-19 h.


Subject(s)
Enzyme Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoles/pharmacology , Succinimides/pharmacology , Animals , Cell Line , Crystallography, X-Ray , Dogs , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoles/chemistry , Indoles/pharmacokinetics , Macaca fascicularis , Male , Mice , Molecular Docking Simulation , Rats , Structure-Activity Relationship , Succinimides/chemistry , Succinimides/pharmacokinetics
6.
ChemMedChem ; 10(4): 688-714, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25735812

ABSTRACT

Sphingosine-1-phosphate (S1P) receptor agonists have shown promise as therapeutic agents for multiple sclerosis (MS) due to their regulatory roles within the immune, central nervous system, and cardiovascular system. Here, the design and optimization of novel [1,2,4]oxadiazole derivatives as selective S1P receptor agonists are described. The structure-activity relationship exploration was carried out on the three dominant segments of the series: modification of the polar head group (P), replacement of the oxadiazole linker (L) with different five-membered heterocycles, and the use of diverse 2,2'-disubstituted biphenyl moieties as the hydrophobic tail (H). All three segments have a significant impact on potency, S1P receptor subtype selectivity, physicochemical properties, and in vitro absorption, distribution, metabolism, excretion and toxicity (ADMET) profile of the compounds. From these optimization studies, a selective S1P1 agonist, N-methyl-N-(4-{5-[2-methyl-2'-(trifluoromethyl)biphenyl-4-yl]-1,2,4-oxadiazol-3-yl}benzyl)glycine (45), and a dual S1P1,5 agonist, N-methyl-N-(3-{5-[2'-methyl-2-(trifluoromethyl)biphenyl-4-yl]-1,2,4-oxadiazol-3-yl}benzyl)glycine (49), emerged as frontrunners. These compounds distribute predominantly in lymph nodes and brain over plasma and induce long lasting decreases in lymphocyte count after oral administration. When evaluated head-to-head in an experimental autoimmune encephalomyelitis mouse model, together with the marketed drug fingolimod, a pan-S1P receptor agonist, S1P1,5 agonist 49 demonstrated comparable efficacy while S1P1 -selective agonist 45 was less potent. Compound 49 is not a prodrug, and its improved property profile should translate into a safer treatment of relapsing forms of MS.


Subject(s)
Drug Design , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Immunologic Factors/chemistry , Immunologic Factors/therapeutic use , Oxadiazoles/chemistry , Oxadiazoles/therapeutic use , Receptors, Lysosphingolipid/agonists , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Humans , Immunologic Factors/pharmacokinetics , Mice , Mice, Inbred C57BL , Models, Molecular , Multiple Sclerosis/drug therapy , Oxadiazoles/pharmacokinetics , Receptors, Lysosphingolipid/immunology , Structure-Activity Relationship
7.
J Med Chem ; 54(20): 7299-317, 2011 Oct 27.
Article in English | MEDLINE | ID: mdl-21916510

ABSTRACT

New phenoxyacetic acid antagonists of CRTH2 are described. Following the discovery of a hit compound by a focused screening, high protein binding was identified as its main weakness. Optimization aimed at reducing serum protein binding led to the identification of several compounds that showed not only excellent affinities for the receptor (41 compounds with K(i) < 10 nM) but also excellent potencies in a human whole blood assay (IC(50) < 100 nM; PGD2-induced eosinophil shape change). Additional optimization of the PK characteristics led to the identification of several compounds suitable for in vivo testing. Of these, 19k and 19s were tested in two different pharmacological models (acute FITC-mediated contact hypersensitivity and ovalbumin-induced eosinophilia models) and found to be active after oral dosing (10 and 30 mg/kg).


Subject(s)
Acetates/chemical synthesis , Alkynes/chemical synthesis , Anti-Allergic Agents/chemical synthesis , Anti-Inflammatory Agents/chemical synthesis , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Sulfones/chemical synthesis , Acetates/pharmacokinetics , Acetates/pharmacology , Administration, Oral , Alkynes/pharmacokinetics , Alkynes/pharmacology , Animals , Anti-Allergic Agents/pharmacokinetics , Anti-Allergic Agents/pharmacology , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Binding, Competitive , Blood Proteins/metabolism , Caco-2 Cells , Cell Membrane Permeability , Cell Shape , Chemotaxis, Leukocyte , Dermatitis, Contact/drug therapy , Eosinophils/drug effects , Eosinophils/pathology , Eosinophils/physiology , Female , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Microsomes, Liver/metabolism , Ovalbumin/immunology , Phenoxyacetates , Protein Binding , Pulmonary Eosinophilia/drug therapy , Pulmonary Eosinophilia/immunology , Radioligand Assay , Rats , Structure-Activity Relationship , Sulfones/pharmacokinetics , Sulfones/pharmacology
8.
ACS Comb Sci ; 13(5): 453-7, 2011 Sep 12.
Article in English | MEDLINE | ID: mdl-21627306

ABSTRACT

α-Azido aldehydes can be employed in Passerini reactions with isocyanides and various propiolic acids to afford the three-component adducts in moderate to good yields. These compounds undergo a straightforward azide-alkyne dipolar cycloaddition to furnish triazolo-fused dihydrooxazinones.


Subject(s)
Aldehydes/chemistry , Azides/chemistry , Chemistry Techniques, Synthetic , Oxazines/chemical synthesis , Triazoles/chemistry , Cyclization , Molecular Structure , Oxazines/chemistry , Stereoisomerism
9.
ACS Med Chem Lett ; 2(12): 938-42, 2011 Dec 08.
Article in English | MEDLINE | ID: mdl-24900284

ABSTRACT

Antagonism of the CRTH2 receptor represents a very attractive target for a variety of allergic diseases. Most CRTH2 antagonists known to date possess a carboxylic acid moiety, which is essential for binding. However, potential acid metabolites O-acyl glucuronides might be linked to idiosynchratic toxicity in humans. In this communication, we describe a new series of compounds that lack the carboxylic acid moiety. Compounds with high affinity (K i < 10 nM) for the receptor have been identified. Subsequent optimization succeeded in reducing the high metabolic clearance of the first compounds in human and rat liver microsomes. At the same time, inhibition of the CYP isoforms was optimized, giving rise to stable compounds with an acceptable CYP inhibition profile (IC50 CYP2C9 and 2C19 > 1 µM). Taken together, these data show that compounds devoid of carboxylic acid groups could represent an interesting alternative to current CRTH2 antagonists in development.

10.
ACS Med Chem Lett ; 2(8): 644-9, 2011 Aug 11.
Article in English | MEDLINE | ID: mdl-24900359

ABSTRACT

New spiroindolinone antagonists of CRTH2 are described. Following identification of insufficient stability in human plasma as an important liability of the lead compounds, replacement of the spirosuccinimide core with a spirohydantoin or spiropyrrolidinone structure has yielded a compound that is fully stable in human plasma and with good potency in a human whole blood assay (IC50 = 69 nM) but shows a much lower oral bioavailability (6-9% in rodents) than the earlier compounds. Successive optimization aimed at restoring an acceptable oral bioavailability has yielded compound (S)-17a, which exhibits both stability in human plasma and a good oral bioavailability in rat (37%) and mouse (39%). This compound is also active in a mouse model of ovalbumin-induced lung inflammation following oral dosing at 30 mg/kg.

12.
Bioorg Med Chem Lett ; 20(12): 3614-7, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20483605

ABSTRACT

The discovery of a novel series of CXCR3 antagonists is described. Starting from an HTS positive, iterative optimization gave potent compounds (IC(50) 15 nM in a chemotaxis assay). The strategy employed to improve the metabolic stability of these derivatives is described.


Subject(s)
Chemotaxis/drug effects , Receptors, CXCR3/antagonists & inhibitors , Animals , Cell Line , Humans , Inhibitory Concentration 50 , Mice , Microsomes , Rats , Structure-Activity Relationship , T-Lymphocytes/physiology
13.
Bioorg Med Chem Lett ; 20(5): 1516-9, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20149651

ABSTRACT

The discovery of a novel series of S1P1 agonists is described. Starting from a micromolar HTS positive, iterative optimization gave rise to several single-digit nanomolar S1P1 agonists. The compounds were able to induce internalization of the S1P1 receptor, and a selected compound was shown to be able to induce lymphopenia in mice after oral dosing.


Subject(s)
Antineoplastic Agents/chemistry , Receptors, Lysosphingolipid/agonists , Administration, Oral , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Drug Discovery , Fingolimod Hydrochloride , High-Throughput Screening Assays , Humans , Mice , Microsomes, Liver/metabolism , Propylene Glycols/chemistry , Propylene Glycols/pharmacology , Rats , Receptors, Lysosphingolipid/metabolism , Sphingosine/analogs & derivatives , Sphingosine/chemistry , Sphingosine/pharmacology , Structure-Activity Relationship
14.
J Org Chem ; 74(13): 4753-62, 2009 Jul 03.
Article in English | MEDLINE | ID: mdl-19462991

ABSTRACT

The formation of carboxylic esters via reaction of carboxylic acids with O-alkylisoureas proceeds in excellent yields with very short reaction times when conducted in a monomode microwave synthesizer. Efficient processes were developed using preformed or commercially available isoureas derived from primary and secondary alcohols, with a reaction time of only 5 min or less. It was demonstrated that under these microwave conditions, ester formation proceeded in good yields with clean inversion of configuration where appropriate. The process was validated using menthol, a hindered substrate for S(N)2 reactions. In addition, starting from primary alcohols, ester formation was successfully accomplished using an in situ isourea formation procedure. A polymer-assisted solution-phase procedure was also developed by employing preformed solid-supported isoureas and by an efficient "catch and release" ester formation procedure whereby primary alcohols were caught on resin as isoureas by reaction with immobilized carbodiimide and released as esters by subsequent treatment with a carboxylic acids.


Subject(s)
Alkanes/chemistry , Carboxylic Acids/chemistry , Urea/chemistry , Alcohols/chemistry , Esters/chemical synthesis , Microwaves , Molecular Conformation , Molecular Structure , Stereoisomerism
15.
J Med Chem ; 51(7): 2227-43, 2008 Apr 10.
Article in English | MEDLINE | ID: mdl-18318469

ABSTRACT

A novel chemical class of potent chemoattractant receptor-homologous expressed on Th2 lymphocytes (CRTH2 or DP2) antagonists is reported. An initial and moderately potent spiro-indolinone compound ( 5) was found during a high-throughput screening campaign. Structure-activity relationship (SAR) investigation around the carboxylic acid group revealed that changes in this part of the molecule could lead to a reversal of functional activity, yielding weakly potent agonists. SAR investigation of the succinimide functional group led to the discovery of several single-digit nanomolar antagonists. The potency of these compounds was confirmed in a human eosinophil chemotaxis assay. Moreover, compounds ( R)- 58 and ( R)- 71 were shown to possess pharmacokinetic properties suitable for development as an orally bioavailable drug.


Subject(s)
Hypersensitivity/drug therapy , Indoles/classification , Indoles/pharmacology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Spiro Compounds/classification , Spiro Compounds/pharmacology , Animals , Binding Sites , Caco-2 Cells , Cell Membrane Permeability/drug effects , Crystallography, X-Ray , Cytochrome P-450 Enzyme Inhibitors , Dogs , Drug Design , Humans , Indoles/chemistry , Inflammation/drug therapy , Male , Microsomes/drug effects , Microsomes/metabolism , Models, Molecular , Molecular Structure , Rats , Rats, Sprague-Dawley , Spiro Compounds/chemistry , Stereoisomerism , Structure-Activity Relationship
16.
Mol Divers ; 9(4): 341-51, 2005.
Article in English | MEDLINE | ID: mdl-16311811

ABSTRACT

A straightforward three-step synthesis of a solid-supported IBX amide resin was achieved using inexpensive and commercially available 2-iodobenzoic acid chloride and Merrifield resin. A high apparent loading of 0.63 mmol g(-1) was obtained. Oxidation of a range of alcohols to the corresponding carbonyl compounds proved very straightforward using 1.2 equiv of the resin. Recycling of the resin was also possible with minimal loss of activity after two reoxidations.


Subject(s)
Alcohols/chemistry , Amides/chemistry , Amides/chemical synthesis , Esters , Ethers , Methylene Chloride , Oxidation-Reduction , Polymers , Resins, Synthetic/chemistry
17.
J Comb Chem ; 7(5): 688-96, 2005.
Article in English | MEDLINE | ID: mdl-16153063

ABSTRACT

A practical protocol for the parallel synthesis of 2-oxazolines using polymer-supported reagents is described. Polymer-supported Mukaiyama reagent is used to couple a carboxylic acid with an amino alcohol, giving a beta-hydroxyamide, which is then cyclized in situ using either polymer-supported sulfonyl chloride resin or polymer-bound 2-fluoropyridinium triflate. Both 2,4-disubstituted and 2,4,5-trisubstituted 2-oxazolines are obtained in high yields and excellent purities after a simple resin filtration and solvent evaporation routine.


Subject(s)
Combinatorial Chemistry Techniques/methods , Oxazoles/chemical synthesis , Adjuvants, Immunologic/chemical synthesis , Adjuvants, Immunologic/chemistry , Carboxylic Acids/chemistry , Oxazoles/chemistry , Tosyl Compounds/chemistry
18.
Org Lett ; 6(24): 4579-82, 2004 Nov 25.
Article in English | MEDLINE | ID: mdl-15548080

ABSTRACT

Polymer-supported N-alkyl-2-chloro pyridinium triflate was synthesized in one step from Wang resin. This reagent proved to be a very effective coupling reagent for the synthesis of esters or amides from carboxylic acids and alcohols or amines (primary and secondary). [reaction: see text]

19.
J Org Chem ; 69(18): 5897-905, 2004 Sep 03.
Article in English | MEDLINE | ID: mdl-15373475

ABSTRACT

Polymer-supported O-alkylisoureas were prepared by reaction of an alcohol with a polymer-supported carbodiimide under copper(II) catalysis. These reagents were used to transform carboxylic acids into the corresponding methyl, benzyl, allyl, and p-nitrobenzyl esters in a highly chemoselective manner in high yields and in very high purity after simple resin filtration and solvent evaporation. The reactions could be carried out using both conventional or microwave heating, with reaction times as short as 3-5 min in the latter case, without compromising yield, purity, or chemoselectivity. Unfortunately, the corresponding solid-supported tert-butyl isoureas could not be prepared.

20.
Org Lett ; 5(6): 853-6, 2003 Mar 20.
Article in English | MEDLINE | ID: mdl-12633089

ABSTRACT

[reaction: see text] Polymer-supported O-methyl, O-benzyl, and O-allyl-isoureas were prepared by copper(II)-catalyzed reaction of polymer-supported carbodiimide with the corresponding alcohols. These polymer-supported reagents were successfully employed to convert a series of carboxylic acids to methyl, benzyl, or allyl esters, in good yields. The products were obtained with high purity (>95% by NMR) after a simple resin filtration-solvent evaporation sequence.

SELECTION OF CITATIONS
SEARCH DETAIL
...