Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Science ; 354(6319): 1563-1566, 2016 12 23.
Article in English | MEDLINE | ID: mdl-27856846

ABSTRACT

Carbon dioxide (CO2) is one of the most abundant species in cometary nuclei, but because of its high volatility, CO2 ice is generally only found beneath the surface. We report the infrared spectroscopic identification of a CO2 ice-rich surface area located in the Anhur region of comet 67P/Churyumov-Gerasimenko. Spectral modeling shows that about 0.1% of the 80- by 60-meter area is CO2 ice. This exposed ice was observed a short time after the comet exited local winter; following the increased illumination, the CO2 ice completely disappeared over about 3 weeks. We estimate the mass of the sublimated CO2 ice and the depth of the eroded surface layer. We interpret the presence of CO2 ice as the result of the extreme seasonal changes induced by the rotation and orbit of the comet.

2.
Nature ; 529(7586): 368-72, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26760209

ABSTRACT

Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet's formation.


Subject(s)
Extraterrestrial Environment/chemistry , Ice/analysis , Meteoroids , Diffusion , Gases/analysis , Gases/chemistry , Spectrum Analysis
3.
Science ; 347(6220): aaa0628, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25613895

ABSTRACT

The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument on board the Rosetta spacecraft has provided evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 micrometers), the spectral slopes in visible and infrared ranges (5 to 25 and 1.5 to 5% kÅ(-1)), and the broad absorption feature in the 2.9-to-3.6-micrometer range present across the entire illuminated surface are compatible with opaque minerals associated with nonvolatile organic macromolecular materials: a complex mixture of various types of carbon-hydrogen and/or oxygen-hydrogen chemical groups, with little contribution of nitrogen-hydrogen groups. In active areas, the changes in spectral slope and absorption feature width may suggest small amounts of water-ice. However, no ice-rich patches are observed, indicating a generally dehydrated nature for the surface currently illuminated by the Sun.

4.
Science ; 334(6055): 492-4, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-22034430

ABSTRACT

The Visible, InfraRed, and Thermal Imaging Spectrometer (VIRTIS) on Rosetta obtained hyperspectral images, spectral reflectance maps, and temperature maps of the asteroid 21 Lutetia. No absorption features, of either silicates or hydrated minerals, have been detected across the observed area in the spectral range from 0.4 to 3.5 micrometers. The surface temperature reaches a maximum value of 245 kelvin and correlates well with topographic features. The thermal inertia is in the range from 20 to 30 joules meter(-2) kelvin(-1) second(-0.5), comparable to a lunarlike powdery regolith. Spectral signatures of surface alteration, resulting from space weathering, seem to be missing. Lutetia is likely a remnant of the primordial planetesimal population, unaltered by differentiation processes and composed of chondritic materials of enstatitic or carbonaceous origin, dominated by iron-poor minerals that have not suffered aqueous alteration.

5.
Sci Total Environ ; 393(2-3): 385-93, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18262597

ABSTRACT

Municipal solid waste incinerator bottom ash (MSWI BA) can be used in road construction where it can become exposed to microbial attack, as it can be used as a source of oligoelements by bacteria. The extent of microbial colonization of the bottom ash and the intensity of microbial processes can impact the rate of leaching of potentially toxic elements. As a consequence, our objective was to highlight the mutual interactions between MSWI bottom ash and Pseudomonas aeruginosa, a common bacteria found in the environment. Experiments were carried out for 133 days at 25 degrees C using a modified soxhlet's device and a culture medium, in a closed, unstirred system with weekly renewal of the aqueous phase. The solid products of the experiments were studied using a laser confocal microscopy, which showed that biofilms formed on mineral surfaces, possibly protecting them from leaching. Our results show that the total mass loss after 133 days is systematically higher in abiotic medium than in the biotic one in proportions going from 31 to 53% depending on element. Ca and Sr show that rates in biotic medium was approximately 19% slower than in abiotic medium during the first few weeks. However, in the longer term, both rates decreased to reach similar end values after 15 weeks. By taking into account the quantities of each tracer trapped in the layers we calculate an absolute alteration rate of MSWI BA in the biotic medium (531 microg m(-2) d(-1)) and in the abiotic one (756 microg m(-2) d(-1)).


Subject(s)
Incineration , Industrial Waste , Metals, Heavy/metabolism , Pseudomonas aeruginosa/metabolism
6.
Nature ; 448(7150): 172-5, 2007 Jul 12.
Article in English | MEDLINE | ID: mdl-17625560

ABSTRACT

The remarkable compositional diversity of volatile ices within comets can plausibly be attributed to several factors, including differences in the chemical, thermal and radiation environments in comet-forming regions, chemical evolution during their long storage in reservoirs far from the Sun, and thermal processing by the Sun after removal from these reservoirs. To determine the relevance of these factors, measurements of the chemistry as a function of depth in cometary nuclei are critical. Fragmenting comets expose formerly buried material, but observational constraints have in the past limited the ability to assess the importance of formative conditions and the effects of evolutionary processes on measured composition. Here we report the chemical composition of two distinct fragments of 73P/Schwassmann-Wachmann 3. The fragments are remarkably similar in composition, in marked contrast to the chemical diversity within the overall comet population and contrary to the expectation that short-period comets should show strong compositional variation with depth in the nucleus owing to evolutionary processing from numerous close passages to the Sun. Comet 73P/Schwassmann-Wachmann 3 is also depleted in the most volatile ices compared to other comets, suggesting that the depleted carbon-chain chemistry seen in some comets from the Kuiper belt reservoir is primordial and not evolutionary.

7.
J Hazard Mater ; 136(3): 889-95, 2006 Aug 25.
Article in English | MEDLINE | ID: mdl-16507331

ABSTRACT

A basaltic glass and a vitrified bottom ash were incubated at 25 degrees C in a growth medium (based on casaminoacids) inoculated with Pseudomonas aeruginosa. Bacterial growth and mineral concentrations in different compartments (bacterial cells, growth medium and biofilm) were monitored in short-term (3 days), and long-term experiments involving repeated renewals of the culture medium during 174 days. In short-term experiments, while the concentration of iron increased in the presence of bacteria, a decrease in Ni and Zn was observed in the growth medium compared to the sterile condition. During long-term experiments, such differences gradually decreased and disappeared after 78 days. On the contrary, iron concentration remained higher in the biotic condition compared to the sterile one. Bacterial growth resulted within a few days in the formation of a biofilm, which lead to the cementation of the altered glass grains. Most of the constituents of the glass (Si, Mg, Fe, Ti, Ba, Co, Zn, Cu, Ni and Cr) were found in the biofilm, while the chemical composition of the bacterial cells was very different.


Subject(s)
Biofilms , Glass/chemistry , Metals/chemistry , Pseudomonas aeruginosa/metabolism , Adsorption , Culture Media , Hydrogen-Ion Concentration , Industrial Waste/analysis , Microscopy, Electron , Microscopy, Electron, Scanning , Osmium Tetroxide/chemistry , Time Factors
8.
Science ; 310(5746): 265-9, 2005 Oct 14.
Article in English | MEDLINE | ID: mdl-16150977

ABSTRACT

On 4 July 2005, many observatories around the world and in space observed the collision of Deep Impact with comet 9P/Tempel 1 or its aftermath. This was an unprecedented coordinated observational campaign. These data show that (i) there was new material after impact that was compositionally different from that seen before impact; (ii) the ratio of dust mass to gas mass in the ejecta was much larger than before impact; (iii) the new activity did not last more than a few days, and by 9 July the comet's behavior was indistinguishable from its pre-impact behavior; and (iv) there were interesting transient phenomena that may be correlated with cratering physics.


Subject(s)
Meteoroids , Cosmic Dust , Jupiter , Organic Chemicals , Photometry
9.
Science ; 292(5520): 1339-43, 2001 May 18.
Article in English | MEDLINE | ID: mdl-11359003

ABSTRACT

The gas activity of comet C/1999 S4 (LINEAR) was monitored at radio wavelengths during its disruption. A runaway fragmentation of the nucleus may have begun around 18 July 2000 and proceeded until 23 July. The mass in small icy debris (

10.
Nature ; 399(6737): 640-1, 1999 Jun 17.
Article in English | MEDLINE | ID: mdl-10385110
11.
Science ; 279(5357): 1707-10, 1998 Mar 13.
Article in English | MEDLINE | ID: mdl-9497286

ABSTRACT

Deuterated hydrogen cyanide (DCN) was detected in a comet, C/1995 O1 (Hale-Bopp), with the use of the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. The inferred deuterium/hydrogen (D/H) ratio in hydrogen cyanide (HCN) is (D/H)HCN = (2.3 +/- 0.4) x 10(-3). This ratio is higher than the D/H ratio found in cometary water and supports the interstellar origin of cometary ices. The observed values of D/H in water and HCN imply a kinetic temperature >/=30 +/- 10 K in the fragment of interstellar cloud that formed the solar system.


Subject(s)
Deuterium/analysis , Hydrogen Cyanide/analysis , Meteoroids , Ice , Temperature , Water
12.
Science ; 279(5352): 842-4, 1998 Feb 06.
Article in English | MEDLINE | ID: mdl-9452379

ABSTRACT

Deuterated water (HDO) was detected in comet C/1995 O1 (Hale-Bopp) with the use of the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. The inferred D/H ratio in Hale-Bopp's water is (3.3 +/- 0.8) x 10(-4). This result is consistent with in situ measurements of comet P/Halley and the value found in C/1996 B2 (Hyakutake). This D/H ratio, higher than that in terrestrial water and more than 10 times the value for protosolar H2, implies that comets cannot be the only source for the oceans on Earth.


Subject(s)
Deuterium Oxide/analysis , Meteoroids , Water/analysis , Ice , Temperature
14.
Science ; 275(5308): 1904-7, 1997 Mar 28.
Article in English | MEDLINE | ID: mdl-9072960

ABSTRACT

Comet Hale-Bopp (C/1995 O1) was observed at wavelengths from 2.4 to 195 micrometers with the Infrared Space Observatory when the comet was about 2.9 astronomical units (AU) from the sun. The main observed volatiles that sublimated from the nucleus ices were water, carbon monoxide, and carbon dioxide in a ratio (by number) of 10:6:2. These species are also the main observed constituents of ices in dense interstellar molecular clouds; this observation strengthens the links between cometary and interstellar material. Several broad emission features observed in the 7- to 45-micrometer region suggest the presence of silicates, particularly magnesium-rich crystalline olivine. These features are similar to those observed in the dust envelopes of Vega-type stars.


Subject(s)
Meteoroids , Carbon Dioxide/analysis , Carbon Monoxide/analysis , Cosmic Dust , Ice , Iron Compounds/analysis , Magnesium Compounds/analysis , Silicates/analysis , Spectrum Analysis , Water
15.
Science ; 275(5308): 1909-12, 1997 Mar 28.
Article in English | MEDLINE | ID: mdl-9072962

ABSTRACT

The activity of comet Hale-Bopp (C/1995 O1) was monitored monthly by optical imaging and long-slit spectroscopy of its dust and gas distribution over heliocentric distances of 4.6 to 2.9 astronomical units. The observed band intensities of the NH2 radical and the H2O+ ion cannot be explained by existing models of fluorescence excitation, warranting a reexamination of the corresponding production rates, at least at large heliocentric distances. Comparing the production rate of the CN radical to its proposed parent, HCN, shows no evidence for the need of a major additional source for CN in Hale-Bopp at large heliocentric distances. The dust and CN production rates are consistent with a significant amount of sublimation occurring from icy dust grains surrounding Hale-Bopp.


Subject(s)
Meteoroids , Ammonia/analysis , Carbon Monoxide/analysis , Cosmic Dust , Gases , Ice , Nitriles/analysis , Spectrum Analysis , Temperature , Water
16.
Science ; 275(5308): 1915-8, 1997 Mar 28.
Article in English | MEDLINE | ID: mdl-9072964

ABSTRACT

Spectra obtained from ground-based radio telescopes show the progressive release of CO, CH3OH, HCN, H2O (from OH), H2S, CS, H2CO, CH3CN, and HNC as comet Hale-Bopp (C/1995 01) approached the sun from 6.9 to 1.4 astronomical units (AU). The more volatile species were relatively more abundant in the coma far from the sun, but there was no direct correlation between overabundance and volatility. Evidence for H2O sublimation from icy grains was seen beyond 3.5 AU from the sun. The change from a CO-driven coma to an H2O-driven coma occurred at about 3 AU. The gas outflow velocity and temperature increased as Hale-Bopp approached the sun.


Subject(s)
Meteoroids , Carbon/analysis , Carbon Monoxide/analysis , Cosmic Dust , Gases , Hydrogen/analysis , Ice , Methanol/analysis , Nitrogen/analysis , Spectrum Analysis , Temperature , Water
17.
Nature ; 383(6599): 418-20, 1996 Oct 03.
Article in English | MEDLINE | ID: mdl-8837771

ABSTRACT

Volatile compounds in comets are the most pristine materials surviving from the time of formation of the Solar System, and thus potentially provide information about conditions that prevailed in the primitive solar nebula. Moreover, comets may have supplied a substantial fraction of the volatiles on the terrestrial planets, perhaps including organic compounds that played a role in the origin of life on Earth. Here we report the detection of hydrogen isocyanide (HNC) in comet Hyakutake. The abundance of HNC relative to hydrogen cyanide (HCN) is very similar to that observed in quiescent interstellar molecular clouds, and quite different from the equilibrium ratio expected in the outermost solar nebula, where comets are thought to form. Such a departure from equilibrium has long been considered a hallmark of gas-phase chemical processing in the interstellar medium, suggesting that interstellar gases have been incorporated into the comet's nucleus, perhaps as ices frozen onto interstellar grains. If this interpretation is correct, our results should provide constraints on the temperature of the solar nebula, and the subsequent chemical processes that occurred in the region where comets formed.


Subject(s)
Extraterrestrial Environment , Hydrogen Cyanide/analysis , Meteoroids , Freezing , Ice , Spectrum Analysis
18.
Nature ; 383(6601): 606-8, 1996 Oct 17.
Article in English | MEDLINE | ID: mdl-8857534

ABSTRACT

Comets are rich in volatile materials, of which roughly 80% (by number) are water molecules. Considerable progress is being made in identifying the other volatile species, the abundances of which should enable us to determine whether comets formed primarily from ice-covered interstellar grains, or from material that was chemically processed in the early solar nebula. Here we report the detection of acetylene (C2H2) in the infrared spectrum of comet C/1996 B2 (Hyakutake). The estimated abundance is 0.3-0.9%, relative to water, which is comparable to the predicted solid-phase abundance in cold interstellar clouds. This suggests that the volatiles in comet Hyakotake may have come from ice-covered interstellar grains, rather than material processed in the accretion disk out of which the Solar System formed.


Subject(s)
Acetylene/analysis , Meteoroids , Cosmic Dust , Extraterrestrial Environment , Spectrophotometry, Infrared
19.
Nature ; 380(6570): 137-9, 1996 Mar 14.
Article in English | MEDLINE | ID: mdl-8600385

ABSTRACT

When comet C/1995 O1 (Hale-Boop) was discovered, at a distance of seven astronomical units from the sun, it was more than one hundred times brighter than comet Halley at the same distance. A comet's brightness is derived from the reflection of sunlight from dust grains driven away from the nucleus by the sublimation of volatile ices. Near the sun, sublimation of water ice (a main constituent of comet nuclei) is the source of cometary activity; but at its current heliocentric distance, Hale-Boop is too cold for this process to operate. Other comets have shown activity at large distances, and in the case of comet Schwassmann-Wachmann 1, carbon monoxide has been detected in quantities sufficient to generate its observed coma. Here we report the detection of CO emission from Hale-Boop, at levels indicating a very large rate of outgassing. Several other volatile species were searched for, but not detected. Sublimation of CO therefore appears to be responsible for the present activity of this comet, and we anticipate that future observations will reveal the onset of sublimation of other volatile species as the comet continues its present journey towards the sun.


Subject(s)
Carbon Monoxide/analysis , Meteoroids , Extraterrestrial Environment , Formaldehyde/analysis , Hydrogen Cyanide/analysis , Methanol/analysis , Spectrum Analysis
20.
Nature ; 373(6515): 592-5, 1995 Feb 16.
Article in English | MEDLINE | ID: mdl-7854414

ABSTRACT

In July 1994, the collisions of the fragments of comet Shoemaker-Levy 9 with Jupiter resulted in dramatic changes in the planet's atmosphere. Observations of the events suggest that the composition and thermal properties of the atmosphere were considerably modified at the impact sites, with the changes persisting for times lasting from minutes to weeks (see, for example, refs 1-4). Here we report observations of the impact sites at millimetre wave-lengths, which reveal strong emission lines associated with carbon monoxide, carbonyl sulphide and carbon monosulphide. The abundance of carbon monoxide in the jovian atmosphere is normally very low; carbonyl sulphide and carbon monosulphide, on the other hand, have not hitherto been detected. We find that the largest fragments (G and K) each produced approximately 10(14) g of carbon monoxide, 3 x 10(12) g of carbonyl sulphide and 3 x 10(11) g of carbon monosulphide, most probably by shock-induced chemical reactions. Our observations also place firm constraints on the thermal response of Jupiter's stratosphere to the impacts.


Subject(s)
Carbon Compounds, Inorganic , Extraterrestrial Environment , Jupiter , Atmosphere , Carbon , Carbon Monoxide , Sulfides , Sulfur Oxides , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...