Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J R Soc Interface ; 19(186): 20210734, 2022 01.
Article in English | MEDLINE | ID: mdl-35078337

ABSTRACT

Intravitreal (ITV) drug delivery is a new cornerstone for retinal therapeutics. Yet, predicting the disposition of formulations in the human eye remains a major translational hurdle. A prominent, but poorly understood, issue in pre-clinical ITV toxicity studies is unintended particle movements to the anterior chamber (AC). These particles can accumulate in the AC to dangerously raise intraocular pressure. Yet, anatomical differences, and the inability to obtain equivalent human data, make investigating this issue extremely challenging. We have developed an organotypic perfusion strategy to re-establish intraocular fluid flow, while maintaining homeostatic pressure and pH. Here, we used this approach with suitably sized microbeads to profile anterior and posterior ITV particle movements in live versus perfused porcine eyes, and in human donor eyes. Small-molecule suspensions were then tested with the system after exhibiting differing behaviours in vivo. Aggregate particle size is supported as an important determinant of particle movements in the human eye, and we note these data are consistent with a poroelastic model of bidirectional vitreous transport. Together, this approach uses ocular fluid dynamics to permit, to our knowledge, the first direct comparisons between particle behaviours from human ITV injections and animal models, with potential to speed pre-clinical development of retinal therapeutics.


Subject(s)
Pharmaceutical Preparations , Retina , Animals , Humans , Intraocular Pressure , Intravitreal Injections , Perfusion , Swine
2.
Regul Toxicol Pharmacol ; 73(1): 452-62, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26297692

ABSTRACT

A physiologically based pharmacokinetic (PBPK) model was developed and applied to a metabolic series approach for the ethyl series (i.e., ethyl acetate, ethanol, acetaldehyde, and acetate). This approach bases toxicity information on dosimetry analyses for metabolically linked compounds using pharmacokinetic data for each compound and toxicity data for parent or individual compounds. In vivo pharmacokinetic studies of ethyl acetate and ethanol were conducted in rats following IV and inhalation exposure. Regardless of route, ethyl acetate was rapidly converted to ethanol. Blood concentrations of ethyl acetate and ethanol following both IV bolus and infusion suggested linear kinetics across blood concentrations from 0.1 to 10 mM ethyl acetate and 0.01-0.8 mM ethanol. Metabolic parameters were optimized and evaluated based on available pharmacokinetic data. The respiratory bioavailability of ethyl acetate and ethanol were estimated from closed chamber inhalation studies and measured ventilation rates. The resulting ethyl series model successfully reproduces blood ethyl acetate and ethanol kinetics following IV administration and inhalation exposure in rats, and blood ethanol kinetics following inhalation exposure to ethanol in humans. The extrapolated human model was used to derive human equivalent concentrations for the occupational setting of 257-2120 ppm ethyl acetate and 72-517 ppm ethyl acetate for continuous exposure, corresponding to rat LOAELs of 350 and 1500 ppm.


Subject(s)
Acetates/pharmacokinetics , Ethanol/pharmacokinetics , Administration, Inhalation , Animals , Biological Availability , Humans , Inhalation Exposure , Kinetics , Male , Models, Biological , Pilot Projects , Rats , Rats, Sprague-Dawley
3.
Toxicol Lett ; 228(1): 48-55, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24769260

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and often carcinogenic contaminants released into the environment during natural and anthropogenic combustion processes. Benzo[a]pyrene (B[a]P) is the prototypical carcinogenic PAH, and dibenzo[def,p]chrysene (DBC) is a less prevalent, but highly potent transplacental carcinogenic PAH. Both are metabolically activated by isoforms of the cytochrome P450 enzyme superfamily to form reactive carcinogenic and cytotoxic metabolites. Metabolism of B[a]P and DBC was studied in hepatic microsomes of male Sprague-Dawley rats, naïve and pregnant female B6129SF1/J mice, and female humans, corresponding to available pharmacokinetic data. Michaelis-Menten saturation kinetic parameters including maximum rates of metabolism (VMAX, nmol/min/mg microsomal protein), affinity constants (KM, µM), and rates of intrinsic clearance (CLINT, ml/min/kg body weight) were calculated from substrate depletion data. CLINT was also estimated from substrate depletion data using the alternative in vitro half-life method. VMAX and CLINT were higher for B[a]P than DBC, regardless of species. Clearance for both B[a]P and DBC was highest in naïve female mice and lowest in female humans. Clearance rates of B[a]P and DBC in male rat were more similar to female human than to female mice. Clearance of DBC in liver microsomes from pregnant mice was reduced compared to naïve mice, consistent with reduced active P450 protein levels and elevated tissue concentrations and residence times for DBC observed in previous in vivo pharmacokinetic studies. These findings suggest that rats are a more appropriate model organism for human PAH metabolism, and that pregnancy's effects on metabolism should be further explored.


Subject(s)
Benzo(a)pyrene/metabolism , Benzopyrenes/metabolism , Carcinogens/metabolism , Microsomes, Liver/metabolism , Algorithms , Animals , Benzo(a)pyrene/pharmacokinetics , Benzopyrenes/pharmacokinetics , Body Weight/drug effects , Carcinogens/pharmacokinetics , Data Interpretation, Statistical , Female , Half-Life , Humans , Kinetics , Male , Mice , Organ Size/drug effects , Polycyclic Aromatic Hydrocarbons/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL