Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Brain Commun ; 4(6): fcac307, 2022.
Article in English | MEDLINE | ID: mdl-36751497

ABSTRACT

Neuromyelitis optica (NMO) is an autoimmune demyelinating disease of the central nervous system characterized by the presence of autoantibodies (called NMO-IgG) targeting aquaporin-4. Aquaporin-4 is expressed at the perivascular foot processes of astrocytes, in the glia limitans, but also at the ependyma. Most studies have focused on studying the pathogenicity of NMO-IgG on astrocytes, and NMO is now considered an astrocytopathy. However, periependymal lesions are observed in NMO suggesting that ependymal cells could also be targeted by NMO-IgG. Ependymal cells regulate CSF-parenchyma molecular exchanges and CSF flow, and are a niche for sub-ventricular neural stem cells. Our aim was to examine the effect of antibodies from NMO patients on ependymal cells. We exposed two models, i.e. primary cultures of rat ependymal cells and explant cultures of rat lateral ventricular wall whole mounts, to purified IgG of NMO patients (NMO-IgG) for 24 hours. We then evaluated the treatment effect using immunolabelling, functional assays, ependymal flow analysis and bulk RNA sequencing. For each experiment, the effects were compared with those of purified IgG from a healthy donors and non-treated cells. We found that: (i) NMO-IgG induced aquaporin-4 agglomeration at the surface of ependymal cells and induced cell enlargement in comparison to controls. In parallel, it induced an increase in gap junction connexin-43 plaque size; (ii) NMO-IgG altered the orientation of ciliary basal bodies and functionally impaired cilia motility; (iii) NMO-IgG activated the proliferation of sub-ventricular neural stem cells; (iv) treatment with NMO-IgG up-regulated the expression of pro-inflammatory cytokines and chemokines in the transcriptomic analysis. Our study showed that NMO-IgG can trigger an early and specific reactive phenotype in ependymal cells, with functional alterations of intercellular communication and cilia, activation of sub-ventricular stem cell proliferation and the secretion of pro-inflammatory cytokines. These findings suggest a key role for ependymal cells in the early phase of NMO lesion formation.

2.
Front Microbiol ; 11: 1807, 2020.
Article in English | MEDLINE | ID: mdl-32849415

ABSTRACT

Indian fruit bats, flying fox Pteropus medius was identified as an asymptomatic natural host of recently emerged Nipah virus, which is known to induce a severe infectious disease in humans. The absence of P. medius genome sequence presents an important obstacle for further studies of virus-host interactions and better understanding of mechanisms of zoonotic viral emergence. Generation of the high-quality genome sequence is often linked to a considerable effort associated to elevated costs. Although secondary scaffolding methods have reduced sequencing expenses, they imply the development of new tools for the integration of different data sources to achieve more reliable sequencing results. We initially sequenced the P. medius genome using the combination of Illumina paired-end and Nanopore sequencing, with a depth of 57.4x and 6.1x, respectively. Then, we introduced the novel scaff2link software to integrate multiple sources of information for secondary scaffolding, allowing to remove the association with discordant information among two sources. Different quality metrics were next produced to validate the benefits from secondary scaffolding. The P. medius genome, assembled by this method, has a length of 1,985 Mb and consists of 33,613 contigs and 16,113 scaffolds with an NG50 of 19 Mb. At least 22.5% of the assembled sequences is covered by interspersed repeats already described in other species and 19,823 coding genes are annotated. Phylogenetic analysis demonstrated the clustering of P. medius genome with two other Pteropus bat species, P. alecto and P. vampyrus, for which genome sequences are currently available. SARS-CoV entry receptor ACE2 sequence of P. medius was 82.7% identical with ACE2 of Rhinolophus sinicus bats, thought to be the natural host of SARS-CoV. Altogether, our results confirm that a lower depth of sequencing is enough to obtain a valuable genome sequence, using secondary scaffolding approaches and demonstrate the benefits of the scaff2link application. The genome sequence is now available to the scientific community to (i) proceed with further genomic analysis of P. medius, (ii) to characterize the underlying mechanism allowing Nipah virus maintenance and perpetuation in its bat host, and (iii) to monitor their evolutionary pathways toward a better understanding of bats' ability to control viral infections.

3.
Front Oncol ; 10: 712, 2020.
Article in English | MEDLINE | ID: mdl-32670863

ABSTRACT

It is of utmost importance to decipher the role of chronic exposure to low doses of environmental carcinogens on breast cancer progression. The early-transformed triple-negative human mammary MCF10AT1 cells were chronically (60 days) exposed to low doses (10-10 M) of Benzo[a]pyrene (B[a]P), a genotoxic agent, and/or Bisphenol A (BPA), an endocrine disruptor. Our study revealed that exposed MCF10AT1 cells developed, in a time-dependent manner, an acquired phenotype characterized by an increase in cancerous properties (anchorage independent growth and stem-like phenotype). Co-exposure of MCF10AT1 cells to B[a]P and BPA led to a significantly greater aggressive phenotype compared to B[a]P or BPA alone. This study provided new insights into the existence of a functional interplay between the aryl hydrocarbon receptor (AhR) and the G protein-coupled receptor 30 (GPR30) by which chronic and low-dose exposure of B[a]P and/or BPA fosters the progression of MCF10AT1 cells into a more aggressive substage. Experiments using AhR or GPR30 antagonists, siRNA strategies, and RNAseq analysis led us to propose a model in which AhR signaling plays a "driver role" in the AhR/GPR30 cross-talk in mediating long-term and low-dose exposure of B[a]P and/or BPA. Retrospective analysis of two independent breast cancer cohorts revealed that the AhR/GPR30 mRNA expression signature resulted in poor breast cancer prognosis, in particular in the ER-negative and the triple-negative subtypes. Finally, the study identified targeting AhR and/or GPR30 with specific antagonists as a strategy capable of inhibiting carcinogenesis associated with chronic exposure to low doses of B[a]P and BPA in MCF10AT1 cells. Altogether, our results indicate that the engagement of both AhR and GPR30 functions, in particular in an ER-negative/triple-negative context of breast cells, favors tumor progression and leads to poor prognosis.

4.
Front Immunol ; 10: 60, 2019.
Article in English | MEDLINE | ID: mdl-30761132

ABSTRACT

Influenza virus infections remain a major and recurrent public health burden. The intrinsic ever-evolving nature of this virus, the suboptimal efficacy of current influenza inactivated vaccines, as well as the emergence of resistance against a limited antiviral arsenal, highlight the critical need for novel therapeutic approaches. In this context, the aim of this study was to develop and validate an innovative strategy for drug repurposing as host-targeted inhibitors of influenza viruses and the rapid evaluation of the most promising candidates in Phase II clinical trials. We exploited in vivo global transcriptomic signatures of infection directly obtained from a patient cohort to determine a shortlist of already marketed drugs with newly identified, host-targeted inhibitory properties against influenza virus. The antiviral potential of selected repurposing candidates was further evaluated in vitro, in vivo, and ex vivo. Our strategy allowed the selection of a shortlist of 35 high potential candidates out of a rationalized computational screening of 1,309 FDA-approved bioactive molecules, 31 of which were validated for their significant in vitro antiviral activity. Our in vivo and ex vivo results highlight diltiazem, a calcium channel blocker currently used in the treatment of hypertension, as a promising option for the treatment of influenza infections. Additionally, transcriptomic signature analysis further revealed the so far undescribed capacity of diltiazem to modulate the expression of specific genes related to the host antiviral response and cholesterol metabolism. Finally, combination treatment with diltiazem and virus-targeted oseltamivir neuraminidase inhibitor further increased antiviral efficacy, prompting rapid authorization for the initiation of a Phase II clinical trial. This original, host-targeted, drug repurposing strategy constitutes an effective and highly reactive process for the rapid identification of novel anti-infectious drugs, with potential major implications for the management of antimicrobial resistance and the rapid response to future epidemic or pandemic (re)emerging diseases for which we are still disarmed.


Subject(s)
Antiviral Agents/pharmacology , Drug Repositioning , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Influenza A virus/drug effects , Influenza, Human/genetics , Influenza, Human/virology , Animals , Cell Line , Computational Biology/methods , Disease Models, Animal , Drug Therapy, Combination , Female , Gene Expression Profiling , Humans , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza, Human/drug therapy , Mice , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/virology , Pharmacogenomic Testing , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Transcriptome , Virus Replication/drug effects
5.
Glia ; 66(5): 971-986, 2018 05.
Article in English | MEDLINE | ID: mdl-29399880

ABSTRACT

Microglial cells have a double life as the immune cells of the brain in times of stress but have also specific physiological functions in homeostatic conditions. In pathological contexts, microglia undergo a phenotypic switch called "reaction" that promotes the initiation and the propagation of neuro-inflammation. Reaction is complex, molecularly heterogeneous and still poorly characterized, leading to the concept that microglial reactivity might be too diverse to be molecularly defined. However, it remains unknown whether reactive microglia from different pathological contexts share a common molecular signature. Using improved flow cytometry and RNAseq approaches we studied, with higher statistical power, the remodeling of microglia transcriptome in a mouse model of sepsis. Through bioinformatic comparison of our results with published datasets, we defined the microglial reactome as a set of genes discriminating reactive from homeostatic microglia. Ultimately, we identified a subset of 86 genes deregulated in both acute and neurodegenerative conditions. Our data provide a new comprehensive resource that includes functional analysis and specific molecular markers of microglial reaction which represent new tools for its unambiguous characterization.


Subject(s)
Cerebral Cortex/metabolism , Microglia/metabolism , Sepsis/metabolism , Transcriptome , Animals , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Computational Biology , Disease Models, Animal , Female , Flow Cytometry , Homeostasis/physiology , Lipopolysaccharides , Mice, Inbred C57BL , Mice, Transgenic , Neuroimmunomodulation/physiology , Sequence Analysis, RNA
6.
Front Med (Lausanne) ; 2: 54, 2015.
Article in English | MEDLINE | ID: mdl-26322309

ABSTRACT

Changes in microRNAs (miRNAs) expression in many types of cancer suggest that they may be involved in crucial steps during tumor progression. Indeed, miRNAs deregulation has been described in pituitary tumorigenesis, but few studies have described their role in pituitary tumor progression toward aggressiveness and malignancy. To assess the role of miRNAs within the hierarchical cascade of events in prolactin (PRL) tumors during progression, we used an integrative genomic approach to associate clinical-pathological features, global miRNA expression, and transcriptomic profiles of the same human tumors. We describe the specific down-regulation of one principal miRNA, miR-183, in the 8 aggressive (A, grade 2b) compared to the 18 non-aggressive (NA, grades 1a, 2a) PRL tumors. We demonstrate that it acts as an anti-proliferative gene by directly targeting KIAA0101, which is involved in cell cycle activation and inhibition of p53-p21-mediated cell cycle arrest. Moreover, we show that miR-183 and KIAA0101 expression significantly correlate with the main markers of pituitary tumors aggressiveness, Ki-67 and p53. These results confirm the activation of proliferation in aggressive and malignant PRL tumors compared to non-aggressive ones. Importantly, these data also demonstrate the ability of such an integrative genomic strategy, applied in the same human tumors, to identify the molecular mechanisms responsible for tumoral progression even from a small cohort of patients.

7.
J Virol ; 87(1): 234-42, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23077304

ABSTRACT

Monocyte-derived dendritic cells (MDDCs) play a key role in the regulation of the immune system and are the target of numerous gene therapy applications. The genetic modification of MDDCs is possible with human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LVs) but requires high viral doses to bypass their natural resistance to viral infection, and this in turn affects their physiological properties. To date, a single viral protein is able to counter this restrictive phenotype, Vpx, a protein derived from members of the HIV-2/simian immunodeficiency virus SM lineage that counters at least two restriction factors present in myeloid cells. By tagging Vpx with a short heterologous membrane-targeting domain, we have obtained HIV-1 LVs incorporating high levels of this protein (HIV-1-Src-Vpx). These vectors efficiently transduce differentiated MDDCs and monocytes either as previously purified populations or as populations within unsorted peripheral blood mononuclear cells (PBMCs). In addition, these vectors can be efficiently pseudotyped with receptor-specific envelopes, further restricting their cellular tropism almost uniquely to MDDCs. Compared to conventional HIV-1 LVs, these novel vectors allow for an efficient genetic modification of MDDCs and, more importantly, do not cause their maturation or affect their survival, which are unwanted side effects of the transduction process. This study describes HIV-1-Src-Vpx LVs as a novel potent tool for the genetic modification of differentiated MDDCs and of circulating monocyte precursors with strong potential for a wide range of gene therapy applications.


Subject(s)
Dendritic Cells/virology , Genetic Vectors , HIV-1/immunology , Monocytes/virology , Transduction, Genetic , Viral Regulatory and Accessory Proteins/metabolism , Cells, Cultured , HIV-1/genetics , HIV-2/genetics , Humans , Simian Immunodeficiency Virus/genetics , Viral Regulatory and Accessory Proteins/genetics
8.
Epigenetics ; 6(11): 1295-307, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22048253

ABSTRACT

Methyl-CpG Binding Domain (MBD) proteins are thought to be key molecules in the interpretation of DNA methylation signals leading to gene silencing through recruitment of chromatin remodeling complexes. In cancer, the MBD-family member, MBD2, may be primarily involved in the repression of genes exhibiting methylated CpG at their 5' end. Here we ask whether MBD2 randomly associates methylated sequences, producing chance effects on transcription, or exhibits a more specific recognition of some methylated regions. Using chromatin and DNA immunoprecipitation, we analyzed MBD2 and RNA polymerase II deposition and DNA methylation in HeLa cells on arrays representing 25,500 promoter regions. This first whole-genome mapping revealed the preferential localization of MBD2 near transcription start sites (TSSs), within the region analyzed, 7.5 kb upstream through 2.45 kb downstream of 5' transcription start sites. Probe by probe analysis correlated MBD2 deposition and DNA methylation. Motif analysis did not reveal specific sequence motifs; however, CCG and CGC sequences seem to be overrepresented. Nonrandom association (multiple correspondence analysis, p < 0.0001) between silent genes, DNA methylation and MBD2 binding was observed. The association between MBD2 binding and transcriptional repression weakened as the distance between binding site and TSS increased, suggesting that MBD2 represses transcriptional initiation. This hypothesis may represent a functional explanation for the preferential binding of MBD2 at methyl-CpG in TSS regions.


Subject(s)
DNA-Binding Proteins/genetics , Transcription Initiation Site , Binding Sites , Chromatin/metabolism , CpG Islands/genetics , DNA/metabolism , DNA Methylation , HeLa Cells , Humans , Promoter Regions, Genetic , RNA Polymerase II/genetics , RNA Polymerase II/metabolism
9.
Brain Pathol ; 21(5): 533-43, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21251114

ABSTRACT

Integrative genomics approaches associating DNA structure and transcriptomic analysis should allow the identification of cascades of events relating to tumor aggressiveness. While different genome alterations have been identified in pituitary tumors, none have ever been correlated with the aggressiveness. This study focused on one subtype of pituitary tumor, the prolactin (PRL) pituitary tumors, to identify molecular events associated with the aggressive and malignant phenotypes. We combined a comparative genomic hybridization and transcriptomic analysis of 13 PRL tumors classified as nonaggressive or aggressive. Allelic loss within the p arm region of chromosome 11 was detected in five of the aggressive tumors. Allelic loss in the 11q arm was observed in three of these five tumors, all three of which were considered as malignant based on the occurrence of metastases. Comparison of genomic and transcriptomic data showed that allelic loss impacted upon the expression of genes located in the imbalanced region. Data filtering allowed us to highlight five deregulated genes (DGKZ, CD44, TSG101, GTF2H1, HTATIP2), within the missing 11p region, potentially responsible for triggering the aggressive and malignant phenotypes of PRL tumors. Our combined genomic and transcriptomic analysis underlines the importance of chromosome allelic loss in determining the aggressiveness and malignancy of tumors.


Subject(s)
Chromosome Aberrations , Chromosomes, Human, Pair 11 , Pituitary Neoplasms/genetics , Prolactinoma/genetics , Acetyltransferases/genetics , Adult , Aged , Aged, 80 and over , Cell Cycle/genetics , Comparative Genomic Hybridization , DNA-Binding Proteins/genetics , Diacylglycerol Kinase/genetics , Diacylglycerol Kinase/metabolism , Down-Regulation/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Female , Gene Expression Profiling/methods , Genetic Predisposition to Disease/genetics , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Male , Middle Aged , Phosphoproteins/genetics , Signal Transduction/genetics , Transcription Factor TFIIH , Transcription Factors/genetics , Transcription Factors, TFII/genetics
10.
PLoS Genet ; 6(4): e1000913, 2010 Apr 22.
Article in English | MEDLINE | ID: mdl-20421933

ABSTRACT

Epigenomes commonly refer to the sequence of presence/absence of specific epigenetic marks along eukaryotic chromatin. Complete histone-borne epigenomes have now been described at single-nucleosome resolution from various organisms, tissues, developmental stages, or diseases, yet their intra-species natural variation has never been investigated. We describe here that the epigenomic sequence of histone H3 acetylation at Lysine 14 (H3K14ac) differs greatly between two unrelated strains of the yeast Saccharomyces cerevisiae. Using single-nucleosome chromatin immunoprecipitation and mapping, we interrogated 58,694 nucleosomes and found that 5,442 of them differed in their level of H3K14 acetylation, at a false discovery rate (FDR) of 0.0001. These Single Nucleosome Epi-Polymorphisms (SNEPs) were enriched at regulatory sites and conserved non-coding DNA sequences. Surprisingly, higher acetylation in one strain did not imply higher expression of the relevant gene. However, SNEPs were enriched in genes of high transcriptional variability and one SNEP was associated with the strength of gene activation upon stimulation. Our observations suggest a high level of inter-individual epigenomic variation in natural populations, with essential questions on the origin of this diversity and its relevance to gene x environment interactions.


Subject(s)
Epigenesis, Genetic , Nucleosomes/metabolism , Polymorphism, Single Nucleotide , Saccharomyces cerevisiae/genetics , Acetylation , Conserved Sequence , Genome, Fungal , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...