Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(41): 16943-16953, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37796534

ABSTRACT

This research investigates the high-pressure behavior of the Ca(Ti0.95Ge0.05)O3 perovskite, a candidate of the locked-tilt perovskite family (orthorhombic compounds characterized by the absence of changes in the octahedral tilt and volume reduction under pressure controlled solely by isotropic compression). The study combines experimental high-pressure synchrotron diffraction data with density functional theory (DFT) calculations, complemented by the X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), to understand the structural evolution of the perovskite under pressure. The results show that CTG undergoes nearly isotropic compression with the same compressibility along all three unit-cell axes (i.e., Ka0 = Kb0 = Kc0, giving a normalized cell distortion factor with pressure dnorm(P) = 1). However, a modest increase in octahedral tilting with pressure is revealed by DFT calculations, qualifying CTG as a new type of GdFeO3-type perovskite that exhibits both isotropic compression and nonlocked tilting. This finding complements two existing types: perovskites with anisotropic compression and tilting changes and those with isotropic compression and locked tilting. The multimethod approach provides valuable insights into the structural evolution of locked-tilt perovskites under high pressure and establishes a protocol for the efficient study of complex high-pressure systems. The results have implications for the design of new functional materials with desirable properties.

2.
Molecules ; 28(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37375353

ABSTRACT

Zinc oxide (ZnO) is an attractive semiconductor material for photocatalytic applications, owing to its opto-electronic properties. Its performances are, however, strongly affected by the surface and opto-electronic properties (i.e., surface composition, facets and defects), in turn related to the synthesis conditions. The knowledge on how these properties can be tuned and how they are reflected on the photocatalytic performances (activity and stability) is thus essential to achieve an active and stable material. In this work, we studied how the annealing temperature (400 °C vs. 600 °C) and the addition of a promoter (titanium dioxide, TiO2) can affect the physico-chemical properties of ZnO materials, in particular surface and opto-electronic ones, prepared through a wet-chemistry method. Then, we explored the application of ZnO as a photocatalyst in CO2 photoreduction, an appealing light-to-fuel conversion process, with the aim to understand how the above-mentioned properties can affect the photocatalytic activity and selectivity. We eventually assessed the capability of ZnO to act as both photocatalyst and CO2 adsorber, thus allowing the exploitation of diluted CO2 sources as a carbon source.

3.
Materials (Basel) ; 16(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37049149

ABSTRACT

Construction and demolition waste (CDW) from earthquake rubbles was used here as recycled aggregates (RA) in cementitious binders. The materials were sorted in six groups: concrete (CO), natural stone (NS), tile (TI), brick (BR), perforated brick (PF) and roof tile (RT). The abundance (wt.%) of crystalline phases in each RA type was determined by X-ray Powder Diffraction (XRPD). Each group of RAs was used alone (100 wt.% of RA) and mixed with quartz-rich virgin aggregates (VA) to prepare 13 types of mortars (12 specimens per type): one reference mortar (RM) with only VA, six recycled aggregate mortars (RAM) and six recycled-plus-virgin aggregate mortars (RVAM). The physical and mechanical properties of aggregates and mortars reflect the type and abundance of crystalline phases in each CDW group. Recycled mortars rich in concrete, natural stones and tiles have better mechanical performance than mortars prepared with recycled bricks, perforated bricks and roof tiles. For each RA, RVAMs have superior mechanical characteristics than the corresponding RAM. Since the type and amount of phases contained in recycled aggregates strongly control the mechanical performance of new construction materials, they should be routinely quantified as reported here, in addition to other physical features (water absorption, density, etc.). The separation of heterogeneous CDW into homogeneous RA groups is necessary for the production of new construction materials with stable and predictable performances to ensure CDW recycling, especially in areas hit by major adverse events, where large amounts of still valuable materials could be used for reconstruction processes.

4.
ChemSusChem ; 15(13): e202200437, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35394696

ABSTRACT

The development of sustainable and efficient catalysts -namely Ru supported on activated biochars- is carried out for the selective hydrogenation of 5-hydroxymethylfurfural (HMF) to 1-hydroxy-2,5-hexanedione (HHD). Activated biochars obtained from pyrolysis and steam-based physical activation of two different biomasses from animal (leather tannery waste; ALw ) and vegetal (hazelnut shells; AHSw ) origins show completely different chemical, textural, and morphological properties. Compared to ALw , after impregnation with 0.5 wt % Ru, AHSw , with inner micro-mesochannels and cavities and higher layer stacking disorder, leads to better trapping and anchoring of Ru nanoparticles on the catalyst and a suitable Ru single crystal dispersion. This leads to a highly active Ru/AHSw catalyst in the proposed reaction, giving more than 80 % selectivity to HHD and full HMF conversion at 100 °C with 30 bar H2 for 3 h. Ru/AHSw also shows promising performance compared to a commercial Ru/C catalyst.


Subject(s)
Ruthenium , Catalysis , Charcoal , Furaldehyde/analogs & derivatives , Hexanones , Hydrogenation , Ruthenium/chemistry
5.
Photochem Photobiol Sci ; 21(6): 1011-1029, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35287186

ABSTRACT

A low-cost NaP zeolite@TiO2 nanocomposite catalyst with zeolite Si/Al ratio lower than three were synthesized for the first time under hydrothermal condition. The nanocomposites were characterized by different methods such as Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), N2 physisorption, NH3 temperature-programmed desorption (NH3-TPD), fluorescence microscopy, thermal analysis (TGA/DTA) and zeta potential analysis. The results showed that a micro-meso structure NaP zeolite with higher surface area and acidity with respect to pure zeolite was prepared. TiO2 nanoparticle was dispersed over the whole of zeolite without aggregation. A reduction of the TiO2 bandgap nanoparticle was observed from DRS spectra. The photocatalytic activity of low-cost NaP zeolite@TiO2 nanocomposite was tested for simultaneous methylene blue dye (MB) and chemical oxygen demand (COD) under solar and ultraviolet light. The result showed that the nanocomposite catalyst has great potential (above 90%) for COD removal discolouring of MB (about 99.6%) at room temperature. The optimum amount of some parameters such as the loaded amount of TiO2 (0.36 g), catalyst dosage (0.1 g), time (2 h), initial dye concentration (100 mg/L), solution pH value (about 7) under solar light were considered. In addition, present negative charge in the surface that show in zeta potential confirm the high activity of catalyst to interaction with cationic dye. As a further advantage, the NaP zeolite@TiO2 nanocomposite was easier to be separated in aqueous media than the pure TiO2 powders, making possible the reuse several times (over five runs) without using oxidant. Finally, the NaP zeolite@TiO2 nanocomposite was used for COD abatement in wastewater from two real industrial streams. The MB degradation kinetics were fitted by a pseudo-first-order model with K = 0.534 h-1.


Subject(s)
Nanocomposites , Zeolites , Biological Oxygen Demand Analysis , Catalysis , Methylene Blue/chemistry , Nanocomposites/chemistry , Spectroscopy, Fourier Transform Infrared , Titanium/chemistry
6.
ACS Sens ; 7(2): 573-583, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35170943

ABSTRACT

Hydrogen is largely adopted in industrial processes and is one of the leading options for storing renewable energy. Due to its high explosivity, detection of H2 has become essential for safety in industries, storage, and transportation. This work aims to design a sensing film for high-sensitivity H2 detection. Chemoresistive gas sensors have extensively been studied for H2 monitoring due to their good sensitivity and low cost. However, further research and development are still needed for a reliable H2 detection at sub-ppm concentrations. Metal-oxide solid solutions represent a valuable approach for tuning the sensing properties by modifying their composition, morphology, and structure. The work started from a solid solution of Sn and Ti oxides, which is known to exhibit high sensitivity toward H2. Such a solid solution was empowered by the addition of Nb, which─according to earlier studies on titania films─was expected to inhibit grain growth at high temperatures, to reduce the film resistance and to impact the sensor selectivity and sensitivity. Powders were synthesized through the sol-gel technique by keeping the Sn-Ti ratio constant at the optimal value for H2 detection with different Nb concentrations (1.5-5 atom %). Such solid solutions were thermally treated at 650 and 850 °C. The sensor based on the solid solution calcined at 650 °C and with the lowest content of Nb exhibited an extremely high sensitivity toward H2, paving the way for H2 ppb detection. For comparison, the response to 50 ppm of H2 was increased 6 times vs SnO2 and twice that of (Sn,Ti)xO2.

7.
J Hazard Mater ; 423(Pt A): 126851, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34474360

ABSTRACT

The addition of wastes to silicate ceramics can considerably expand the compositional spectrum of raw materials with a possible inclusion of hazardous components. The present work quantitatively examines relevant literature to determine whether the benefits of incorporating hazardous elements (HEs) into silicate ceramics outweigh the pitfalls. The mobility of various HEs (Ba, Zn, Cu, Cr, Mo, As, Pb, Ni, and Cd) has been parameterised by three descriptors (immobilisation efficiency, mobilised fraction, and hazard quotient) using leaching data. HEs can be incorporated into both crystalline and glassy phases, depending on the ceramic body type. Moreover, silicate ceramics exhibit a remarkably high immobilisation efficiency (often exceeding 99.9%), as accomplished for Ba, Cd, Ni, and Zn elements. The pitfalls of the inertization process include an insufficient stabilisation of incorporated HEs, as indicated by the high hazard quotients (beyond the permissible limits established for inert materials) obtained in some cases for Mo, As, Cr, Pb, and Cu elements. Such behaviour is related to oxy-anionic complexes (Mo, As, Cr) that can form their own phases or are not linked to the tetrahedral framework of aluminosilicate glass. Pb and Cu elements are preferentially partitioned to glass with a low coordination number, while As and especially Mo are not always stabilised in silicate ceramics. These drawbacks necessitate conducting additional studies to develop appropriate inertisation strategies for these elements.

8.
Materials (Basel) ; 16(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36614511

ABSTRACT

Five porcelain and porcelain stoneware bodies were investigated to compare sintering mechanisms and kinetics, phase and microstructure evolution, and high temperature stability. All batches were designed with the same raw materials and processing conditions, and characterized by optical dilatometry, XRF, XRPD-Rietveld, FEG-SEM and technological properties. Porcelain and porcelain stoneware behave distinctly during sintering, with the convolution of completely different phase evolution and melt composition/structure. The firing behavior of porcelain is essentially controlled by microstructural features. Changes in mullitization create conditions for a relatively fast densification rate at lower temperature (depolymerized melt, lower solid load) then to contrast deformations at high temperature (enhanced effective viscosity by increasing solid load, mullite aspect ratio, and melt polymerization). In porcelain stoneware, the sintering behavior is basically governed by physical and chemical properties of the melt, which depend on the stability of quartz and mullite at high temperature. A buffering effect ensures adequate effective viscosity to counteract deformation, either by preserving a sufficient skeleton or by increasing melt viscosity if quartz is melted. When a large amount of soda-lime glass is used, no buffering effect occurs with melting of feldspars, as both solid load and melt viscosity decrease. In this batch, the persistence of a feldspathic skeleton plays a key role to control pyroplasticity.

9.
Molecules ; 26(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34641499

ABSTRACT

(1) Background: Metal dithiocarbamate compounds have long been the subject of research due to their ease of formation, excellent properties and potential applications. However, manganese complexes with dithiocarbamates, to our knowledge, have never been used for medical imaging applications. With the aim of developing a new class of mononuclear manganese(II)-based agents for molecular imaging applications, we performed a specific investigation into the synthesis of mononuclear bis-substituted Mn(II) complexes with dithiocarbamate ligands. (2) Methods: Synthesis in either open or inert atmosphere at different Mn(II) to diethyldithiocarbamate molar ratios were performed and the products characterized by IR, EA, ESI-MS and XRD analysis. (3) Results: We found that only under oxygen-free atmospheric conditions the Mn(II) complex MnL2, where L = diethyldithiocarbamate ligand, is obtained, which was further observed to react with dioxygen in the solid state to form the intermediate superoxo Mn(III) complex [MnL2(η2-O2)]. The existence of the superoxo complex was revealed by mass spectroscopy, and this species was interpreted as an intermediate step in the reaction that led the bis-substituted Mn(II) complex, MnL2, to transform into the tris-substituted Mn(III) complex, MnL3. A similar result was found with the ligand L' (= bis(N-ethoxyethyl)dithiocarbamate). (4) Conclusions: We found that in open atmosphere and in aqueous solution, only manganese(III) diethyldithiocarbamate complexes can be prepared. We report here a new example of a small-molecule Mn(II) complex that efficiently activates dioxygen in the solid state through the formation of an intermediate superoxide adduct.

10.
Sensors (Basel) ; 20(20)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086770

ABSTRACT

Among the various chemoresistive gas sensing properties studied so far, the sensing response reproducibility, i.e., the capability to reproduce a device with the same sensing performance, has been poorly investigated. However, the reproducibility of the gas sensing performance is of fundamental importance for the employment of these devices in on-field applications, and to demonstrate the reliability of the process development. This sensor property became crucial for the preparation of medical diagnostic tools, in which the use of specific chemoresistive gas sensors along with a dedicated algorithm can be used for screening diseases. In this work, the reproducibility of SmFeO3 perovskite-based gas sensors has been investigated. A set of four SmFeO3 devices, obtained from the same screen-printing deposition, have been tested in laboratory with both controlled concentrations of CO and biological fecal samples. The fecal samples tested were employed in the clinical validation protocol of a prototype for non-invasive colorectal cancer prescreening. Sensors showed a high reproducibility degree, with an error lower than 2% of the response value for the test with CO and lower than 6% for fecal samples. Finally, the reproducibility of the SmFeO3 sensor response and recovery times for fecal samples was also evaluated.


Subject(s)
Colorectal Neoplasms , Early Detection of Cancer , Nanostructures , Biosensing Techniques , Colorectal Neoplasms/diagnosis , Humans , Mass Screening , Reproducibility of Results
11.
Materials (Basel) ; 12(19)2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31547485

ABSTRACT

Light-driven processes can be regarded as a promising technology for chemical production within the bio-refinery concept, due to the very mild operative conditions and high selectivity of some reactions. In this work, we report copper oxide (CuO)-titanium dioxide (TiO2) nanocomposites to be efficient and selective photocatalysts for ethanol photodehydrogenation under gas phase conditions, affording 12-fold activity improvement compared to bare TiO2. In particular, the insertion method of the CuO co-catalyst in different TiO2 materials and its effects on the photocatalytic activity were studied. The most active CuO co-catalyst was observed to be highly dispersed on titania surface, and highly reducible. Moreover, such high dispersion was observed to passivate some surface sites where ethanol is strongly adsorbed, thus improving the activity. This kind of material can be obtained by the proper selection of loading technique for both co-catalysts, allowing a higher coverage of photocatalyst surface (complex-precipitation in the present work), and the choice of titania material itself. Loading copper on a high surface area titania was observed to afford a limited ethanol conversion, due to its intrinsically higher reactivity affording to a strong interaction with the co-catalyst.

12.
RSC Adv ; 9(38): 21660-21666, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-35518894

ABSTRACT

A two component three degree simplex lattice experimental design was employed to evaluate the impact of different mixing fractions of TiO2 and ZnO on an ordered mesoporous SBA-15 support for CO2 photoreduction. It was anticipated that the combined advantages of TiO2 and ZnO: low cost, non-toxicity and combined electronic properties would facilitate CO2 photoreduction. The fraction of ZnO had a statistically dominant impact on maximum CO2 adsorption (ß 2 = 22.65, p-value = 1.39 × 10-4). The fraction of TiO2 used had a statistically significant positive impact on CO (ß 1 = 9.71, p-value = 2.93 × 10-4) and CH4 (ß 1 = 1.43, p-value = 1.35 × 10-3) cumulative production. A negative impact, from the interaction term between the fractions of TiO2 and ZnO, was found for CH4 cumulative production (ß 3 = -2.64, p-value = 2.30 × 10-2). The systematic study provided evidence for the possible loss in CO2 photoreduction activity from sulphate groups introduced during the synthesis of ZnO. The decrease in activity is attributed to the presence of sulphate species in the ZnO prepared, which may possibly act as charge carrier and/or radical intermediate scavengers.

13.
Environ Technol ; 40(28): 3689-3704, 2019 Dec.
Article in English | MEDLINE | ID: mdl-29873602

ABSTRACT

Fe3O4/NaP nanocomposite was synthesized and modified using 3-aminopropyltrimethoxysilane (3-APTS)-functionalization. Fe3O4/NaP/NH2 was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, elemental analysis, energy-dispersive X-ray analysis, vibrating sample magnetometer, Brunauer-Emmett-Teller and thermogravimetric analysis techniques. Batch adsorption studies of Pb(II) and Cd(II) on Fe3O4/NaP/NH2 were investigated. The effect of experimental parameters (including pH, adsorbent dose, heavy metals' concentration, adsorption time and temperature) was studied. The results indicated that Fe3O4/NaP/NH2 have a high removal percent for Pb(II) and Cd(II) (more than 95%). The metal-loaded Fe3O4/NaP/NH2 nanocomposite could be recovered from the aqueous solution by magnetic separation and regenerated easily by acid treatment. The experimental data were fitted to Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich (DKR) isotherm models. The Langmuir equation showed a better correlation with the experimental data than the other two models. The adsorption kinetics data were found to follow the pseudo-second-order kinetic model for Pb(II) and pseudo-first-order for Cd(II). The thermodynamic parameters (ΔG, ΔH and ΔS) were measured and the negative value of Gibbs energy indicated that the adsorption process was spontaneous in nature. The in vitro antibacterial activity of Fe3O4/NaP/NH2 composites before and after removal of metals show good inhibition on bacterial growth against Bacillus subtilis (as Gram-positive bacteria) and Pseudomonas aeruginosa (as Gram-negative bacteria), and the antibacterial activity of it comparison with standard drugs.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Zeolites , Adsorption , Bacteria , Cadmium , Kinetics , Lead , Thermodynamics
14.
Materials (Basel) ; 11(12)2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30563190

ABSTRACT

The shear viscosity and the glass-vapor surface tension at high temperature are crucial to understand the viscous flow sintering kinetics of porcelain stoneware. Moreover, the pyroplastic deformation depends on the viscosity of the whole body, which is made up of a suspension of crystals dispersed in the melt. The existing fundamental theoretical background, along with semi-empirical constitutive laws for viscous flow sintering and glass densification, can be exploited through different approaches to estimate the physical properties at high temperatures starting from amount and chemical composition of the melt. In this work, a comprehensive attempt to predict the properties of the liquid phase is proposed by means of a detailed overview of existing models for viscosity and surface tension of glasses and melts at high temperature. The chemical composition of the vitreous phase and its physical properties at high temperature are estimated through an experimental approach based on the qualitative and quantitative chemical and phase analyses (by Rietveld refinement of X-ray powder diffraction patterns) of different porcelain-like materials. Repercussions on the firing behavior of ceramic bodies, are discussed. Comparative examples are provided for porcelain stoneware tiles, vitreous china and porcelain bodies, disclosing differences in composition and properties but a common sintering mechanism.

15.
ACS Appl Mater Interfaces ; 9(29): 24812-24820, 2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28657706

ABSTRACT

A deepened investigation on an innovative organic-inorganic hybrid material, referred to as ECS-14 (where ECS = Eni carbon silicates), revealed the possibility to use them as gas sensors. Indeed, among ECS phases, the crystalline state and the hexagonal microplateletlike morphology characteristic of ECS-14 seemed favorable properties to obtain continuous and uniform films. ECS-14 phase was used as functional material in screen-printable compositions and was thus deposited by drop coating for morphological, structural, thermal, and electrical characterizations. Possible operation at room temperature was investigated as technological progress, offering intrinsic safety in sensors working in harsh or industrial environments and avoiding high power consumption of most common sensors based on metal oxide semiconductors. Electrical characterization of the sensors based on ECS-14 versus concentrations of gaseous analytes gave significant results at room temperature in the presence of humidity, thereby demonstrating fundamental properties for a good quality sensor (speed, reversibility, and selectivity) that make them competitive with respect to systems currently in use. Remarkably, we observed functionality reversal of the organic and inorganic components; that is, in contrast to other hybrids, for ECS-14 the functional site has been ascribed to the inorganic phase while the organic component provided structural stability to the material. The sensing mechanism for humidity was also investigated.

16.
Dalton Trans ; 43(27): 10617-27, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24835643

ABSTRACT

The influence of H3BO3 on the crystallization of hybrid organic-inorganic aluminosilicates denoted as Eni Carbon Silicates (ECS's) was investigated. Syntheses were carried out at 100 °C under different experimental conditions, using bridged silsesquioxanes of general formula (EtO)3Si-R-Si(OEt)3 (R = -C6H4- (BTEB), -C10H6- (BTEN) and -C6H4-C6H4- (BTEBP)), in the presence of equimolar concentrations of NaAlO2 and H3BO3. The study, involving the synthesis of three different but structurally related phases (ECS-14 from BTEB, ECS-13 here described for the first time from BTEN, and ECS-5 from BTEBP), confirmed a catalytic role for H3BO3 which in general increased the crystallization rate and improved the product quality in terms of amount of crystallized phase (crystallinity), size of the crystallites and phase purity, while it was weakly incorporated in trace amounts in the framework of ECS's.

17.
J Environ Health Sci Eng ; 12(1): 35, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24428854

ABSTRACT

Recently, hybrid materials using poly ethylene glycol and porous nanocrystals have been developed for drug release. In this study, a series of poly ethylene glycol (PEG)/NaY zeolite and PEG/MCM-41 nanocomposites get synthesized. These materials are characterized using FT-IR spectroscopy, XRD, TGA and SEM. After loading the metronidazole onto these nanocomposites, the release of Metronidazole was studied in two kinds of release fluids simulating body fluid KH2PO4-Na2HPO4 buffer (pH = 7.4) and gastric fluid (HCl aqueous solution, pH = 1.5) while controlling the time, pH values, and temperature using UV-vis. Results showed that these nanocomposites have further release related to NaY, MCM-41 and the order of release in two pH solutions was PEG/NaY > PEG/MCM-41 > NaY > MCM-41. The behavior of drug release in these nanocomposites is probably due to hydrogen bonding interactions between drug and the hydroxyl group on the composite framework.

18.
Chem Commun (Camb) ; 48(59): 7356-8, 2012 Jul 28.
Article in English | MEDLINE | ID: mdl-22717682

ABSTRACT

ECS-14, a crystalline microporous hybrid organic-inorganic aluminosilicate, has been synthesized by using 1,4-bis-(triethoxysilyl)-benzene (BTEB) as a source of silica. Its structure contains a system of linear channels with 12-membered ring openings, running along the [001] direction, resembling the pore architecture of the AFI framework type.

19.
Chemistry ; 17(49): 13892-7, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22052708

ABSTRACT

The crystal structures of three MgCl(2)·nEtOH complexes with n=1.5, 2.8, and 3.3 have been fully determined. Such complexes are the fundamental precursors for Ziegler-Natta polymerization catalysts used to produce polyolefins on a multimillion-ton scale worldwide. The ab initio structure solution showed that the structure of MgCl(2)·nEtOH complexes with n=1.5 and 2.8 are based on ribbons of metal-centered octahedra, whereas for n=3.3 this chainlike arrangement breaks into a threadlike structure of isolated octahedra linked by hydrogen bonds. A clear correlation between catalyst performance and the crystal structure of precursors has been found, and reveals the fundamental role of the latter in determining catalyst properties. The direct knowledge of building blocks in the precursor structures will help to develop more accurate models for activated catalysts. These models will not require the arbitrary and oversimplified assumption of locating the catalyst active sites on selected cut surfaces of the α-MgCl(2) crystal lattice.

20.
J Phys Chem A ; 113(49): 13772-8, 2009 Dec 10.
Article in English | MEDLINE | ID: mdl-19904928

ABSTRACT

The structural relaxation around Cr(3+) in YAl(1-x)Cr(x)O(3) perovskites was investigated and compared with analogous Cr-Al joins (corundum, spinel, garnet). Eight compositions (x(Cr)((3+)) from 0 to 1) were prepared by sol-gel combustion and were analyzed by a combined X-ray diffraction (XRD) and electron absorption spectroscopy (EAS) approach. The unit cell parameters and the XRD averaged octahedral (Cr,Al)-O and ([VIII])Y-O bond distances scale linearly with the chromium fraction. The optical parameters show an expected decrease of crystal field strength (10Dq) and an increase of covalency (B(35)) and polarizability (B(55)) toward YCrO(3), but a nonlinear trend outlines some excess 10Dq below x(Cr)((3+)) approximately 0.4. The local Cr-O bond lengths, as calculated from EAS, indicate a compression from 1.98 A (x(Cr)((3+)) = 1.0) down to 1.95 A (x(Cr)((3+)) = 0.035) so that the relaxation coefficient of perovskite (epsilon = 0.54) is the lowest in comparison with garnet (epsilon = 0.74), spinel (epsilon = 0.68), and corundum (epsilon = 0.58) in contrast with its structural features. The enhanced covalent character of the Cr(3+)-O-Cr(3+) bond in the one-dimensional arrangement of corner-sharing octahedra can be invoked as a factor limiting the perovskite polyhedral network flexibility. The increased probability of Cr-O-Cr clusters for x(Cr)((3+)) greater than approximately 0.4 is associated to diverging trends of nonequivalent interoctahedral angles. The relatively low relaxation degree of Y(Al,Cr)O(3) can be also understood by considering an additional contribution to 10Dq because of the electrostatic potential of the rest of the lattice ions upon the localized electrons of the CrO(6) octahedron. Such an "excess" of 10Dq increases when the point symmetry of the Cr site is low, as in perovskite, and would be affected by the change of yttrium effective coordination number observed by XRD for x(Cr)((3+)) greater than approximately 0.4. This would justify the systematic underestimation of local Cr-O bond distances, as inferred from EAS, compared to what is derived from X-ray absorption (XAS) studies implying a stronger degree of relaxation around Cr(3+) of all the structures considered and supporting the hypothesis that 10Dq from EAS contains more information than previously retained particularly an additional contribution from the next nearest neighboring ions.

SELECTION OF CITATIONS
SEARCH DETAIL
...