Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Commun Med (Lond) ; 2: 70, 2022.
Article in English | MEDLINE | ID: mdl-35759330

ABSTRACT

Background: Alzheimer's disease, the most common cause of dementia, causes a progressive and irreversible deterioration of cognition that can sometimes be difficult to diagnose, leading to suboptimal patient care. Methods: We developed a predictive model that computes multi-regional statistical morpho-functional mesoscopic traits from T1-weighted MRI scans, with or without cognitive scores. For each patient, a biomarker called "Alzheimer's Predictive Vector" (ApV) was derived using a two-stage least absolute shrinkage and selection operator (LASSO). Results: The ApV reliably discriminates between people with (ADrp) and without (nADrp) Alzheimer's related pathologies (98% and 81% accuracy between ADrp - including the early form, mild cognitive impairment - and nADrp in internal and external hold-out test sets, respectively), without any a priori assumptions or need for neuroradiology reads. The new test is superior to standard hippocampal atrophy (26% accuracy) and cerebrospinal fluid beta amyloid measure (62% accuracy). A multiparametric analysis compared DTI-MRI derived fractional anisotropy, whose readout of neuronal loss agrees with ADrp phenotype, and SNPrs2075650 is significantly altered in patients with ADrp-like phenotype. Conclusions: This new data analytic method demonstrates potential for increasing accuracy of Alzheimer diagnosis.


Alzheimer's disease is the most common cause of dementia, impacting memory, thinking and behaviour. It can be challenging to diagnose Alzheimer's disease which can lead to suboptimal patient care. During the development of Alzheimer's disease the brain shrinks and the cells within it die. One method that can be used to assess brain function is magnetic resonance imaging, which uses magnetic fields and radio waves to produce images of the brain. In this study, we develop a method that uses magnetic resonance imaging data to identify differences in the brain between people with and without Alzheimer's disease, including before obvious shrinkage of the brain occurs. This method could be used to help diagnose patients with Alzheimer's Disease.

2.
Br J Cancer ; 126(7): 1047-1054, 2022 04.
Article in English | MEDLINE | ID: mdl-34923575

ABSTRACT

BACKGROUND: Predictive models based on radiomics features are novel, highly promising approaches for gynaecological oncology. Here, we wish to assess the prognostic value of the newly discovered Radiomic Prognostic Vector (RPV) in an independent cohort of high-grade serous ovarian cancer (HGSOC) patients, treated within a Centre of Excellence, thus avoiding any bias in treatment quality. METHODS: RPV was calculated using standardised algorithms following segmentation of routine preoperative imaging of patients (n = 323) who underwent upfront debulking surgery (01/2011-07/2018). RPV was correlated with operability, survival and adjusted for well-established prognostic factors (age, postoperative residual disease, stage), and compared to previous validation models. RESULTS: The distribution of low, medium and high RPV scores was 54.2% (n = 175), 33.4% (n = 108) and 12.4% (n = 40) across the cohort, respectively. High RPV scores independently associated with significantly worse progression-free survival (PFS) (HR = 1.69; 95% CI:1.06-2.71; P = 0.038), even after adjusting for stage, age, performance status and residual disease. Moreover, lower RPV was significantly associated with total macroscopic tumour clearance (OR = 2.02; 95% CI:1.56-2.62; P = 0.00647). CONCLUSIONS: RPV was validated to independently identify those HGSOC patients who will not be operated tumour-free in an optimal setting, and those who will relapse early despite complete tumour clearance upfront. Further prospective, multicentre trials with a translational aspect are warranted for the incorporation of this radiomics approach into clinical routine.


Subject(s)
Neoplasm Recurrence, Local , Ovarian Neoplasms , Humans , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm, Residual , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/surgery , Prognosis , Retrospective Studies
3.
Front Neurosci ; 14: 567222, 2020.
Article in English | MEDLINE | ID: mdl-33041762

ABSTRACT

Dyskinesia associated with chronic levodopa treatment in Parkinson's disease is associated with maladaptive striatal plasticity. The objective of this study was to examine whether macroscale structural changes, as captured by magnetic resonance imaging (MRI) accompany this plasticity and to identify plausible cellular contributors in a rodent model of levodopa-induced dyskinesia. Adult male Sprague-Dawley rats were rendered hemi-parkinsonian by stereotaxic injection of 6-hydroxydopamine into the left medial forebrain bundle prior to chronic treatment with saline (control) or levodopa to induce abnormal involuntary movements (AIMs), reflective of dyskinesia. Perfusion-fixed brains underwent ex vivo structural MRI before sectioning and staining for cellular markers. Chronic treatment with levodopa induced significant AIMs (p < 0.0001 versus saline). The absolute volume of the ipsilateral, lesioned striatum was increased in levodopa-treated rats resulting in a significant difference in percentage volume change when compared to saline-treated rats (p < 0.01). Moreover, a significant positive correlation was found between this volume change and AIMs scores for individual levodopa-treated rats (r = 0.96; p < 0.01). The density of Iba1+ cells was increased within the lesioned versus intact striatum (p < 0.01) with no difference between treatment groups. Conversely, Iba1+ microglia soma size was significantly increased (p < 0.01) in the lesioned striatum of levodopa-treated but not saline-treated rats. Soma size was not, however, significantly correlated with either AIMs or MRI volume change. Although GFAP+ astrocytes were elevated in the lesioned versus intact striatum (p < 0.001), there was no difference between treatment groups. No statistically significant effects of either lesion or treatment on RECA1, a marker for blood vessels, were observed. Collectively, these data suggest chronic levodopa treatment in 6-hydroxydopamine lesioned rats is associated with increased striatal volume that correlates with the development of AIMs. The accompanying increase in number and size of microglia, however, cannot alone explain this volume expansion. Further multi-modal studies are warranted to establish the brain-wide effects of chronic levodopa treatment.

4.
J Nucl Med ; 61(12): 1743-1748, 2020 12.
Article in English | MEDLINE | ID: mdl-32513905

ABSTRACT

Accurate disease monitoring is essential after transarterial chemoembolization (TACE) in hepatocellular carcinoma (HCC) because of the potential for profound adverse events and large variations in survival outcome. Posttreatment changes on conventional imaging can confound determination of residual or recurrent disease, magnifying the clinical challenge. On the basis of increased expression of thymidylate synthase (TYMS), thymidine kinase 1 (TK-1), and equilibrative nucleoside transporter 1 (SLC29A1) in HCC compared with liver tissue, we conducted a proof-of-concept study evaluating the efficacy of 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) PET to assess response to TACE. Because previous PET studies in HCC have been hampered by high background liver signal, we investigated whether a temporal-intensity voxel clustering (kinetic spatial filtering, or KSF) improved lesion detection. Methods: A tissue microarray was built from 36 HCC samples and from matching surrounding cirrhotic tissue and was stained for TK-1 A prospective study was conducted; 18 patients with a diagnosis of HCC by the criteria of the American Association for the Study of Liver Diseases who were eligible for treatment with TACE were enrolled. The patients underwent baseline conventional imaging and dynamic 18F-FLT PET with KSF followed by TACE. Imaging was repeated 6-8 wk after TACE. The PET parameters were compared with modified enhancement-based RECIST. Results: Cancer Genome Atlas analysis revealed increased RNA expression of TYMS, TK-1, and SLC29A1 in HCC. TK-1 protein expression was significantly higher in HCC (P < 0.05). The sensitivity of 18F-FLT PET for baseline HCC detection was 73% (SUVmax, 9.7 ± 3.0; tumor to liver ratio, 1.2 ± 0.3). Application of KSF did not improve lesion detection. Lesion response after TACE by modified RECIST was 58% (14 patients with 24 lesions). A 30% reduction in mean 18F-FLT PET uptake was observed after TACE, correlating with an observed PET response of 60% (15/25). A significant and profound reduction in the radiotracer delivery parameter K1 after TACE was observed. Conclusion:18F-FLT PET can differentiate HCC from surrounding cirrhotic tissue, with PET parameters correlating with TACE response. KSF did not improve visualization of tumor lesions. These findings warrant further investigation.


Subject(s)
Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/therapy , Chemoembolization, Therapeutic , Dideoxynucleosides , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/therapy , Positron-Emission Tomography , Adult , Aged , Carcinoma, Hepatocellular/metabolism , Female , Humans , Liver Neoplasms/metabolism , Male , Middle Aged , Prospective Studies , Treatment Outcome
5.
Hum Brain Mapp ; 39(4): 1743-1754, 2018 04.
Article in English | MEDLINE | ID: mdl-29341323

ABSTRACT

The hippocampal formation is a complex brain structure that is important in cognitive processes such as memory, mood, reward processing and other executive functions. Histological and neuroimaging studies have implicated the hippocampal region in neuropsychiatric disorders as well as in neurodegenerative diseases. This highly plastic limbic region is made up of several subregions that are believed to have different functional roles. Therefore, there is a growing interest in imaging the subregions of the hippocampal formation rather than modelling the hippocampus as a homogenous structure, driving the development of new automated analysis tools. Consequently, there is a pressing need to understand the stability of the measures derived from these new techniques. In this study, an automated hippocampal subregion segmentation pipeline, released as a developmental version of Freesurfer (v6.0), was applied to T1-weighted magnetic resonance imaging (MRI) scans of 22 healthy older participants, scanned on 3 separate occasions and a separate longitudinal dataset of 40 Alzheimer's disease (AD) patients. Test-retest reliability of hippocampal subregion volumes was assessed using the intra-class correlation coefficient (ICC), percentage volume difference and percentage volume overlap (Dice). Sensitivity of the regional estimates to longitudinal change was estimated using linear mixed effects (LME) modelling. The results show that out of the 24 hippocampal subregions, 20 had ICC scores of 0.9 or higher in both samples; these regions include the molecular layer, granule cell layer of the dentate gyrus, CA1, CA3 and the subiculum (ICC > 0.9), whilst the hippocampal fissure and fimbria had lower ICC scores (0.73-0.88). Furthermore, LME analysis of the independent AD dataset demonstrated sensitivity to group and individual differences in the rate of volume change over time in several hippocampal subregions (CA1, molecular layer, CA3, hippocampal tail, fissure and presubiculum). These results indicate that this automated segmentation method provides a robust method with which to measure hippocampal subregions, and may be useful in tracking disease progression and measuring the effects of pharmacological intervention.


Subject(s)
Alzheimer Disease/diagnostic imaging , Healthy Aging , Hippocampus/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Pattern Recognition, Automated/methods , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Follow-Up Studies , Healthy Aging/pathology , Hippocampus/pathology , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Middle Aged , Organ Size , Reproducibility of Results , Software
6.
PLoS One ; 12(7): e0180733, 2017.
Article in English | MEDLINE | ID: mdl-28738061

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disorder producing a variety of motor and cognitive deficits with the causes remaining largely unknown. The gradual loss of the nigrostriatal pathway is currently considered the pivotal pathological event. To better understand the progression of PD and improve treatment management, defining the disease on a structural basis and expanding brain analysis to extra-nigral structures is indispensable. The anatomical complexity and the presence of neuromelanin, make the use of non-human primates an essential element in developing putative imaging biomarkers of PD. To this end, ex vivo T2-weighted magnetic resonance images were acquired from control and 1-methyl-4 phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated marmosets. Volume measurements of the caudate, putamen, and substantia nigra indicated significant atrophy and cortical thinning. Tensor-based morphometry provided a more extensive and hypothesis free assessment of widespread changes caused by the toxin insult to the brain, especially highlighting regional cortical atrophy. The results highlight the importance of developing imaging biomarkers of PD in non-human primate models considering their distinct neuroanatomy. It is essential to further develop these biomarkers in vivo to provide non-invasive tools to detect pre-symptomatic PD and to monitor potential disease altering therapeutics.


Subject(s)
MPTP Poisoning/pathology , Parkinson Disease/pathology , Substantia Nigra/pathology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Behavior, Animal , Biomarkers/metabolism , Callithrix , Disease Models, Animal , Female , MPTP Poisoning/metabolism , Magnetic Resonance Imaging/methods , Male , Parkinson Disease/metabolism , Substantia Nigra/drug effects , Substantia Nigra/metabolism
7.
PLoS One ; 12(1): e0168556, 2017.
Article in English | MEDLINE | ID: mdl-28099507

ABSTRACT

A variety of mouse models have been developed that express mutant huntingtin (mHTT) leading to aggregates and inclusions that model the molecular pathology observed in Huntington's disease. Here we show that although homozygous HdhQ150 knock-in mice developed motor impairments (rotarod, locomotor activity, grip strength) by 36 weeks of age, cognitive dysfunction (swimming T maze, fear conditioning, odor discrimination, social interaction) was not evident by 94 weeks. Concomitant to behavioral assessments, T2-weighted MRI volume measurements indicated a slower striatal growth with a significant difference between wild type (WT) and HdhQ150 mice being present even at 15 weeks. Indeed, MRI indicated significant volumetric changes prior to the emergence of the "clinical horizon" of motor impairments at 36 weeks of age. A striatal decrease of 27% was observed over 94 weeks with cortex (12%) and hippocampus (21%) also indicating significant atrophy. A hypothesis-free analysis using tensor-based morphometry highlighted further regions undergoing atrophy by contrasting brain growth and regional neurodegeneration. Histology revealed the widespread presence of mHTT aggregates and cellular inclusions. However, there was little evidence of correlations between these outcome measures, potentially indicating that other factors are important in the causal cascade linking the molecular pathology to the emergence of behavioral impairments. In conclusion, the HdhQ150 mouse model replicates many aspects of the human condition, including an extended pre-manifest period prior to the emergence of motor impairments.


Subject(s)
Cerebral Cortex/pathology , Cognitive Dysfunction/pathology , Corpus Striatum/pathology , Hippocampus/pathology , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/pathology , Motor Activity/physiology , Animals , Cognitive Dysfunction/genetics , Disease Models, Animal , Female , Gene Knock-In Techniques , Huntingtin Protein/metabolism , Magnetic Resonance Imaging , Male , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Motor Activity/genetics , Rotarod Performance Test , Weight Gain/genetics
8.
Brain Behav Immun ; 63: 50-59, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27940258

ABSTRACT

Genetic and environmental risk factors for psychiatric disorders are suggested to disrupt the trajectory of brain maturation during adolescence, leading to the development of psychopathology in adulthood. Rodent models are powerful tools to dissect the specific effects of such risk factors on brain maturational profiles, particularly when combined with Magnetic Resonance Imaging (MRI; clinically comparable technology). We therefore investigated the effect of maternal immune activation (MIA), an epidemiological risk factor for adult-onset psychiatric disorders, on rat brain maturation using atlas and tensor-based morphometry analysis of longitudinal in vivo MR images. Exposure to MIA resulted in decreases in the volume of several cortical regions, the hippocampus, amygdala, striatum, nucleus accumbens and unexpectedly, the lateral ventricles, relative to controls. In contrast, the volumes of the thalamus, ventral mesencephalon, brain stem and major white matter tracts were larger, relative to controls. These volumetric changes were maximal between post-natal day 50 and 100 with no differences between the groups thereafter. These data are consistent with and extend prior studies of brain structure in MIA-exposed rodents. Apart from the ventricular findings, these data have robust face validity to clinical imaging findings reported in studies of individuals at high clinical risk for a psychiatric disorder. Further work is now required to address the relationship of these MRI changes to behavioral dysfunction and to establish thier cellular correlates.


Subject(s)
Brain/immunology , Prenatal Exposure Delayed Effects/immunology , Amygdala/pathology , Animals , Brain/pathology , Disease Models, Animal , Female , Hippocampus/pathology , Image Processing, Computer-Assisted , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Mental Disorders/pathology , Poly I-C/pharmacology , Pregnancy , Prenatal Exposure Delayed Effects/physiopathology , Rats , Rats, Sprague-Dawley
9.
Biomaterials ; 113: 176-190, 2017 01.
Article in English | MEDLINE | ID: mdl-27816001

ABSTRACT

Extracellular matrix (ECM) is widely used as an inductive biological scaffold to repair soft tissue after injury by promoting functional site-appropriate remodeling of the implanted material. However, there is a lack of non-invasive analysis methods to monitor the remodeling characteristics of the ECM material after implantation and its biodegradation over time. We describe the use of diamagnetic chemical exchange saturation transfer (CEST) magnetic resonance imaging to monitor the distribution of an ECM hydrogel after intracerebral implantation into a stroke cavity. In vitro imaging indicated a robust concentration-dependent detection of the ECM precursor and hydrogel at 1.8 and 3.6 ppm, which broadly corresponded to chondroitin sulfate and fibronectin. This detection was robust to changes in pH and improved at 37 °C. In vivo implantation of ECM hydrogel into the stroke cavity in a rat model corresponded macroscopically to the distribution of biomaterial as indicated by histology, but mismatches were also evident. Indeed, CEST imaging detected an endogenous "increased deposition". To account for this endogenous activity, pre-implantation images were subtracted from post-implantation images to yield a selective visualization of hydrogel distribution in the stroke cavity and its evolution over 7 days. The CEST detection of ECM returned to baseline within 3 days due to a decrease in fibronectin and chondroitin sulfate in the hydrogel. The distribution of ECM hydrogel within the stroke cavity is hence feasible in vivo, but further advances are required to warrant a selective long-term monitoring in the context of biodegradation.


Subject(s)
Extracellular Matrix/chemistry , Extracellular Matrix/transplantation , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Magnetic Resonance Imaging/methods , Stroke/therapy , Tissue Scaffolds/chemistry , Animals , Chondroitin Sulfates/analysis , Fibronectins/analysis , Male , Rats , Rats, Sprague-Dawley , Stroke/diagnostic imaging
10.
Sci Rep ; 6: 34946, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27721451

ABSTRACT

To date, unequivocal neuroanatomical features have been demonstrated neither for sporadic nor for familial schizophrenia. Here, we investigated the neuroanatomical changes in a transgenic rat model for a subset of sporadic chronic mental illness (CMI), which modestly overexpresses human full-length, non-mutant Disrupted-in-Schizophrenia 1 (DISC1), and for which aberrant dopamine homeostasis consistent with some schizophrenia phenotypes has previously been reported. Neuroanatomical analysis revealed a reduced density of dopaminergic neurons in the substantia nigra and reduced dopaminergic fibres in the striatum. Parvalbumin-positive interneuron occurrence in the somatosensory cortex was shifted from layers II/III to V/VI, and the number of calbindin-positive interneurons was slightly decreased. Reduced corpus callosum thickness confirmed trend-level observations from in vivo MRI and voxel-wise tensor based morphometry. These neuroanatomical changes help explain functional phenotypes of this animal model, some of which resemble changes observed in human schizophrenia post mortem brain tissues. Our findings also demonstrate how a single molecular factor, DISC1 overexpression or misassembly, can account for a variety of seemingly unrelated morphological phenotypes and thus provides a possible unifying explanation for similar findings observed in sporadic schizophrenia patients. Our anatomical investigation of a defined model for sporadic mental illness enables a clearer definition of neuroanatomical changes associated with subsets of human sporadic schizophrenia.


Subject(s)
Brain/pathology , Dopaminergic Neurons/physiology , Interneurons/physiology , Nerve Tissue Proteins/biosynthesis , Parvalbumins/analysis , Schizophrenia/physiopathology , Animals , Biometry , Disease Models, Animal , Gene Expression , Histocytochemistry , Humans , Magnetic Resonance Imaging , Male , Rats, Sprague-Dawley , Rats, Transgenic
11.
Aging (Albany NY) ; 8(10): 2488-2508, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27743512

ABSTRACT

Despite regulation, brain iron increases with aging and may enhance aging processes including neuroinflammation. Increases in magnetic resonance imaging transverse relaxation rates, R2 and R2*, in the brain have been observed during aging. We show R2 and R2* correlate well with iron content via direct correlation to semi-quantitative synchrotron-based X-ray fluorescence iron mapping, with age-associated R2 and R2* increases reflecting iron accumulation. Iron accumulation was concomitant with increased ferritin immunoreactivity in basal ganglia regions except in the substantia nigra (SN). The unexpected dissociation of iron accumulation from ferritin-upregulation in the SN suggests iron dyshomeostasis in the SN. Occurring alongside microgliosis and astrogliosis, iron dyshomeotasis may contribute to the particular vulnerability of the SN. Dietary restriction (DR) has long been touted to ameliorate brain aging and we show DR attenuated age-related in vivo R2 increases in the SN over ages 7 - 19 months, concomitant with normal iron-induction of ferritin expression and decreased microgliosis. Iron is known to induce microgliosis and conversely, microgliosis can induce iron accumulation, which of these may be the initial pathological aging event warrants further investigation. We suggest iron chelation therapies and anti-inflammatory treatments may be putative 'anti-brain aging' therapies and combining these strategies may be synergistic.


Subject(s)
Aging/metabolism , Ferritins/metabolism , Iron/metabolism , Substantia Nigra/metabolism , Animals , Ferritins/genetics , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Mice , Spectrometry, X-Ray Emission , Substantia Nigra/diagnostic imaging , Up-Regulation
12.
EBioMedicine ; 7: 221-9, 2016 May.
Article in English | MEDLINE | ID: mdl-27322475

ABSTRACT

BACKGROUND: Obstructive sleep apnea (OSA) is a chronic, multisystem disorder that has a bidirectional relationship with several major neurological disorders, including Alzheimer's dementia. Treatment with Continuous Positive Airway Pressure (CPAP) offers some protection from the effects of OSA, although it is still unclear which populations should be targeted, for how long, and what the effects of treatment are on different organ systems. We investigated whether cognitive improvements can be achieved as early as one month into CPAP treatment in patients with OSA. METHODS: 55 patients (mean (SD) age: 47.6 (11.1) years) with newly diagnosed moderate-severe OSA (Oxygen Desaturation Index: 36.6 (25.2) events/hour; Epworth sleepiness score (ESS): 12.8 (4.9)) and 35 matched healthy volunteers were studied. All participants underwent neurocognitive testing, neuroimaging and polysomnography. Patients were randomized into parallel groups: CPAP with best supportive care (BSC), or BSC alone for one month, after which they were re-tested. FINDINGS: One month of CPAP with BSC resulted in a hypertrophic trend in the right thalamus [mean difference (%): 4.04, 95% CI: 1.47 to 6.61], which was absent in the BSC group [-2.29, 95% CI: -4.34 to -0.24]. Significant improvement was also recorded in ESS, in the CPAP plus BSC group, following treatment [mean difference (%): -27.97, 95% CI: -36.75 to -19.19 vs 2.46, 95% CI: -5.23 to 10.15; P=0.012], correlated to neuroplastic changes in brainstem (r=-0.37; P=0.05), and improvements in delayed logical memory scores [57.20, 95% CI: 42.94 to 71.46 vs 23.41, 95% CI: 17.17 to 29.65; P=0.037]. INTERPRETATION: One month of CPAP treatment can lead to adaptive alterations in the neurocognitive architecture that underlies the reduced sleepiness, and improved verbal episodic memory in patients with OSA. We propose that partial neural recovery occurs during short periods of treatment with CPAP.


Subject(s)
Brain/diagnostic imaging , Cognition/physiology , Continuous Positive Airway Pressure/methods , Sleep Apnea, Obstructive/therapy , Adult , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuropsychological Tests , Polysomnography , Quality of Life , Random Allocation , Sleep Apnea, Obstructive/pathology , Treatment Outcome
13.
Br J Pharmacol ; 172(16): 4200-15, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26040297

ABSTRACT

BACKGROUND AND PURPOSE: Histone hypoacetylation is associated with Parkinson's disease (PD), due possibly to an imbalance in the activities of enzymes responsible for histone (de)acetylation; correction of which may be neuroprotective/neurorestorative. This hypothesis was tested using the anti-epileptic drug sodium valproate, a known histone deacetylase inhibitor (HDACI), utilizing a delayed-start study design in the lactacystin rat model of PD. EXPERIMENTAL APPROACH: The irreversible proteasome inhibitor lactacystin was unilaterally injected into the substantia nigra of Sprague-Dawley rats that subsequently received valproate for 28 days starting 7 days after lactacystin lesioning. Longitudinal motor behavioural testing, structural MRI and post-mortem assessment of nigrostriatal integrity were used to track changes in this model of PD and quantify neuroprotection/restoration. Subsequent cellular and molecular analyses were performed to elucidate the mechanisms underlying valproate's effects. KEY RESULTS: Despite producing a distinct pattern of structural re-modelling in the healthy and lactacystin-lesioned brain, delayed-start valproate administration induced dose-dependent neuroprotection/restoration against lactacystin neurotoxicity, characterized by motor deficit alleviation, attenuation of morphological brain changes and restoration of dopaminergic neurons in the substantia nigra. Molecular analyses revealed that valproate alleviated lactacystin-induced histone hypoacetylation and induced up-regulation of brain neurotrophic/neuroprotective factors. CONCLUSIONS AND IMPLICATIONS: The histone acetylation and up-regulation of neurotrophic/neuroprotective factors associated with valproate treatment culminate in a neuroprotective and neurorestorative phenotype in this animal model of PD. As valproate induced structural re-modelling of the brain, further research is required to determine whether valproate represents a viable candidate for disease treatment; however, the results suggest that HDACIs could hold potential as disease-modifying agents in PD.


Subject(s)
Histone Deacetylase Inhibitors/therapeutic use , Neuroprotective Agents/therapeutic use , Parkinson Disease/drug therapy , Valproic Acid/therapeutic use , Acetylation , Acetylcysteine/analogs & derivatives , Animals , Behavior, Animal/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain-Derived Neurotrophic Factor/genetics , Disease Models, Animal , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/physiology , Glial Cell Line-Derived Neurotrophic Factor/genetics , Histone Deacetylase Inhibitors/pharmacology , Histones/metabolism , Male , Neuroprotective Agents/pharmacology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/physiopathology , Proto-Oncogene Proteins c-bcl-2/genetics , Rats, Sprague-Dawley , Up-Regulation , Valproic Acid/pharmacology
14.
Hum Brain Mapp ; 36(4): 1595-608, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25727386

ABSTRACT

fMRI is increasingly implemented in the clinic to assess memory function. There are multiple approaches to memory fMRI, but limited data on advantages and reliability of different methods. Here, we compared effect size, activation lateralisation, and between-sessions reliability of seven memory fMRI protocols: Hometown Walking (block design), Scene encoding (block design and event-related design), Picture encoding (block and event-related), and Word encoding (block and event-related). All protocols were performed on three occasions in 16 patients with temporal lobe epilepsy (TLE). Group T-maps showed activity bilaterally in medial temporal lobe for all protocols. Using ANOVA, there was an interaction between hemisphere and seizure-onset lateralisation (P = 0.009) and between hemisphere, protocol and seizure-onset lateralisation (P = 0.002), showing that the distribution of memory-related activity between left and right temporal lobes differed between protocols and between patients with left-onset and right-onset seizures. Using voxelwise intraclass Correlation Coefficient, between-sessions reliability was best for Hometown and Scenes (block and event). The between-sessions spatial overlap of activated voxels was also greatest for Hometown and Scenes. Lateralisation of activity between hemispheres was most reliable for Scenes (block and event) and Words (event). Using receiver operating characteristic analysis to explore the ability of each fMRI protocol to classify patients as left-onset or right-onset TLE, only the Words (event) protocol achieved a significantly above-chance classification of patients at all three sessions. We conclude that Words (event) protocol shows the best combination of between-sessions reliability of the distribution of activity between hemispheres and reliable ability to distinguish between left-onset and right-onset patients.


Subject(s)
Brain/physiopathology , Clinical Protocols , Epilepsy, Temporal Lobe/physiopathology , Functional Laterality/physiology , Magnetic Resonance Imaging/methods , Memory/physiology , Adult , Brain Mapping/methods , Epilepsy, Temporal Lobe/diagnosis , Epilepsy, Temporal Lobe/psychology , Female , Humans , Male , Middle Aged , Neuropsychological Tests , ROC Curve , Reproducibility of Results , Signal Processing, Computer-Assisted , Young Adult
15.
Biol Psychiatry ; 75(12): 982-90, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24143881

ABSTRACT

BACKGROUND: Increasing evidence suggests that antipsychotic drugs (APD) might affect brain structure directly, particularly the cerebral cortex. However, the precise anatomical loci of these effects and their underlying cellular basis remain unclear. METHODS: With ex vivo magnetic resonance imaging in rats treated chronically with APDs, we used automated analysis techniques to map the regions that show maximal impact of chronic (8 weeks) treatment with either haloperidol or olanzapine on the rat cortex. Guided by these imaging findings, we undertook a focused postmortem investigation with stereology. RESULTS: We identified decreases in the volume and thickness of the anterior cingulate cortex (ACC) after chronic APD treatment, regardless of the APD administered. Postmortem analysis confirmed these volumetric findings and demonstrated that chronic APD treatment had no effect on the total number of neurons or S100ß+ astrocytes in the ACC. In contrast, an increase in the density of these cells was observed. CONCLUSIONS: This study demonstrates region-specific structural effects of chronic APD treatment on the rat cortex, primarily but not exclusively localized to the ACC. At least in the rat, these changes are not due to a loss of either neurons or astrocytes and are likely to reflect a loss of neuropil. Although caution needs to be exerted when extrapolating results from animals to patients, this study highlights the power of this approach to link magnetic resonance imaging findings to their histopathological origins.


Subject(s)
Antipsychotic Agents/adverse effects , Astrocytes/drug effects , Atrophy/chemically induced , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Animals , Antipsychotic Agents/administration & dosage , Astrocytes/pathology , Atrophy/pathology , Benzodiazepines/adverse effects , Cell Count , Haloperidol/adverse effects , Magnetic Resonance Imaging , Male , Neuroimaging , Neurons/drug effects , Olanzapine , Rats
16.
PLoS One ; 8(12): e83173, 2013.
Article in English | MEDLINE | ID: mdl-24349453

ABSTRACT

The full impact of multisystem disease such as obstructive sleep apnoea (OSA) on regions of the central nervous system is debated, as the subsequent neurocognitive sequelae are unclear. Several preclinical studies suggest that its purported major culprits, intermittent hypoxia and sleep fragmentation, can differentially affect adult hippocampal neurogenesis. Although the prospective biphasic nature of chronic intermittent hypoxia in animal models of OSA has been acknowledged, so far the evidence for increased 'compensatory' neurogenesis in humans is uncertain. In a cross-sectional study of 32 patients with mixed severity OSA and 32 non-apnoeic matched controls inferential analysis showed bilateral enlargement of hippocampi in the OSA group. Conversely, a trend for smaller thalami in the OSA group was noted. Furthermore, aberrant connectivity between the hippocampus and the cerebellum in the OSA group was also suggested by the correlation analysis. The role for the ischemia/hypoxia preconditioning in the neuropathology of OSA is herein indicated, with possible further reaching clinical implications.


Subject(s)
Hippocampus/diagnostic imaging , Ischemic Preconditioning , Sleep Apnea Syndromes/diagnostic imaging , Adult , Female , Hippocampus/physiopathology , Humans , Hypertrophy , Male , Middle Aged , Radiography , Sleep Apnea Syndromes/physiopathology
17.
PLoS One ; 8(12): e84726, 2013.
Article in English | MEDLINE | ID: mdl-24367693

ABSTRACT

Huntington's disease (HD) is caused by the expansion of a CAG repeat in the huntingtin (HTT) gene. The R6 mouse models of HD express a mutant version of exon 1 HTT and typically develop motor and cognitive impairments, a widespread huntingtin (HTT) aggregate pathology and brain atrophy. Unlike the more commonly used R6/2 mouse line, R6/1 mice have fewer CAG repeats and, subsequently, a less rapid pathological decline. Compared to the R6/2 line, fewer descriptions of the progressive pathologies exhibited by R6/1 mice exist. The association between the molecular and cellular neuropathology with brain atrophy, and with the development of behavioral phenotypes remains poorly understood in many models of HD. In attempt to link these factors in the R6/1 mouse line, we have performed detailed assessments of behavior and of regional brain abnormalities determined through longitudinal, in vivo magnetic resonance imaging (MRI), as well as an end-stage, ex vivo MRI study and histological assessment. We found progressive decline in both motor and non-motor related behavioral tasks in R6/1 mice, first evident at 11 weeks of age. Regional brain volumes were generally unaffected at 9 weeks, but by 17 weeks there was significant grey matter atrophy. This age-related brain volume loss was validated using a more precise, semi-automated Tensor Based morphometry assessment. As well as these clear progressive phenotypes, mutant HTT (mHTT) protein, the hallmark of HD molecular pathology, was widely distributed throughout the R6/1 brain and was accompanied by neuronal loss. Despite these seemingly concomitant, robust pathological phenotypes, there appeared to be little correlation between the three main outcome measures: behavioral performance, MRI-detected brain atrophy and histopathology. In conclusion, R6/1 mice exhibit many features of HD, but the underlying mechanisms driving these clear behavioral disturbances and the brain volume loss, still remain unclear.


Subject(s)
Behavioral Symptoms/pathology , Brain/pathology , Huntington Disease/pathology , Phenotype , Age Factors , Animals , Conditioning, Psychological , Crosses, Genetic , Immunohistochemistry , Magnetic Resonance Imaging , Maze Learning , Mice , Organ Size , Rotarod Performance Test , Species Specificity
18.
J Neurosci Methods ; 219(1): 27-40, 2013 Sep 30.
Article in English | MEDLINE | ID: mdl-23816399

ABSTRACT

To validate and add value to non-invasive imaging techniques, the corresponding histology is required to establish biological correlates. We present an efficient, semi-automated image-processing pipeline that uses immunohistochemically stained sections to reconstruct a 3D brain volume from 2D histological images before registering these with the corresponding 3D in vivo magnetic resonance images (MRI). A multistep registration procedure that first aligns the "global" volume by using the centre of mass and then applies a rigid and affine alignment based on signal intensities is described. This technique was applied to a training set of three rat brain volumes before being validated on three normal brains. Application of the approach to register "abnormal" images from a rat model of stroke allowed the neurobiological correlates of the variations in the hyper-intense MRI signal intensity caused by infarction to be investigated. For evaluation, the corresponding anatomical landmarks in MR and histology were defined to measure the registration accuracy. A registration error of 0.249 mm (approximately one in-plane voxel dimension) was evident in healthy rat brains and of 0.323 mm in a rodent model of stroke. The proposed reconstruction and registration pipeline allowed for the precise analysis of non-invasive MRI and corresponding microstructural histological features in 3D. We were thus able to interrogate histology to deduce the cause of MRI signal variations in the lesion cavity and the peri-infarct area.


Subject(s)
Brain/pathology , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Stroke/pathology , Algorithms , Animals , Fluorescence , Immunohistochemistry , Infarction, Middle Cerebral Artery/pathology , Rats , Rats, Sprague-Dawley
19.
J Neurosci Methods ; 218(2): 170-83, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23727124

ABSTRACT

Neurological damage, due to conditions such as stroke, results in a complex pattern of structural changes and significant behavioural dysfunctions; the automated analysis of magnetic resonance imaging (MRI) and discovery of structural-behavioural correlates associated with these disorders remains challenging. Voxel lesion symptom mapping (VLSM) has been used to associate behaviour with lesion location in MRI, but this analysis requires the definition of lesion masks on each subject and does not exploit the rich structural information in the images. Tensor-based morphometry (TBM) has been used to perform voxel-wise structural analyses over the entire brain; however, a combination of lesion hyper-intensities and subtle structural remodelling away from the lesion might confound the interpretation of TBM. In this study, we compared and contrasted these techniques in a rodent model of stroke (n=58) to assess the efficacy of these techniques in a challenging pre-clinical application. The results from the automated techniques were compared using manually derived region-of-interest measures of the lesion, cortex, striatum, ventricle and hippocampus, and considered against model power calculations. The automated TBM techniques successfully detect both lesion and non-lesion effects, consistent with manual measurements. These techniques do not require manual segmentation to the same extent as VLSM and should be considered part of the toolkit for the unbiased analysis of pre-clinical imaging-based studies.


Subject(s)
Brain Mapping/methods , Image Interpretation, Computer-Assisted/methods , Stroke/pathology , Stroke/physiopathology , Animals , Automation , Disease Models, Animal , Magnetic Resonance Imaging , Rats , Rats, Sprague-Dawley
20.
J Neurosci Methods ; 216(1): 62-77, 2013 May 30.
Article in English | MEDLINE | ID: mdl-23558335

ABSTRACT

The size and complexity of brain imaging studies in pre-clinical populations are increasing, and automated image analysis pipelines are urgently required. Pre-clinical populations can be subjected to controlled interventions (e.g., targeted lesions), which significantly change the appearance of the brain obtained by imaging. Existing systems for registration (the systematic alignment of scans into a consistent anatomical coordinate system), which assume image similarity to a reference scan, may fail when applied to these images. However, affine registration is a particularly vital pre-processing step for subsequent image analysis which is assumed to be an effective procedure in recent literature describing sophisticated techniques such as manifold learning. Therefore, in this paper, we present an affine registration solution that uses a graphical model of a population to decompose difficult pairwise registrations into a composition of steps using other members of the population. We developed this methodology in the context of a pre-clinical model of stroke in which large, variable hyper-intense lesions significantly impact registration performance. We tested this technique systematically in a simulated human population of brain tumour images before applying it to pre-clinical models of Parkinson's disease and stroke.


Subject(s)
Brain Diseases/pathology , Brain/pathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/veterinary , Pattern Recognition, Automated/methods , Software , Subtraction Technique/veterinary , Animals , Rats , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...