Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dement Neuropsychol ; 9(4): 405-412, 2015.
Article in English | MEDLINE | ID: mdl-29213990

ABSTRACT

Olfactory perception, although restricted to just a few contexts in everyday life, is key in medicine. Several dementia conditions have been associated with early loss of olfactory discrimination. Despite the fact that several brain areas have been associated with olfaction in functional magnetic resonance imaging (fMRI), the mechanisms by which emotional valence is conveyed to the brain are not fully understood. METHODS: In this study, we compared cerebral activations by olfactory stimuli using different emotional valence stimuli on event-related fMRI. We used three standard olfactory odorants with different valence (positive, neutral and negative). Forty-three healthy subjects (22 males) were scanned on a 3.0T MR system. Olfactory stimulation was attained through a delivery system synchronized with image acquisition and subjects´ breathing instructions. fMRI data analysis was performed by the FSL package (Oxford University) including head movement correction, GLM modeling of the neurovascular (BOLD) response and group activation maps produced at p<0.05and corrected for multiple comparison. RESULTS: Increased cerebral responses within the anterior cingulate, amygdaloid nuclei, as well as the dorsolateral prefrontal, occipital and orbitofrontal cortices were observed in positive and negative valence conditions, while response to neutral valence arousal was less intense and not observed in the amygdaloid complex. The most significant statistical response aroused from the stimuli clusters was observed in the negative condition. CONCLUSION: The results of the present study support the hypothesis that neutral stimuli may be more sensitive to early losses in pathological conditions, particularly dementia.


Apesar de praticamente restrita a alguns contextos na rotina diária, a percepção de estímulos olfativos é bastante relevante em medicina. Várias condições patológicas, e em particular as demências, estão associadas à perda precoce da capacidade de discriminação e percepção olfativa. Apesar de estudos de ressonância magnética funcional (RMf), terem identificado várias áreas cerebrais relacionadas à percepção olfativa, ainda não sabemos quais destas são moduladas pela valência emocional do estímulo olfativo. Neste estudo investigamos o padrão de resposta cerebral à odorantes com diferentes valências emocionais em indivíduos saudáveis estudados por RMf relacionada à eventos. MÉTODOS: Comparamos a resposta cerebral em um desenho de RMf relacionado à eventos e com uso de três estímulos olfatórios padronizados e com diferentes valências emocionais (positiva, neutra e negativa). Quarenta e três indivíduos normais (22 homens) foram estudados por RMf relacionada à eventos em aparelho de 3T. A estimulação olfativa foi realizada por meio de sistema sincronizado à aquisição das imagens e às instruções dadas aos sujeitos. A análise dos dados foi feita por meio do software FSL (Universidade de Oxford) e incluiu correções de movimento, modelagem de sinal com técnica GLM e mapas de grupo com nível de significância < 0,5. RESULTADOS: As respostas cerebrais no cíngulo anterior, bem como no córtex dorsolateral pré-frontal, occipital e órbitofrontal foram observadas nas condições de valência positiva e negativa, porém a resposta ao estímulo neutro foi menos intensa e não foi observada em complexos amigdaloides. A resposta estatística mais significante foi observada no cluster de estímulos com valência negativa. CONCLUSÃO: Estes dados representam evidências para a hipótese de que possivelmente a perda da percepção discriminativa de estímulos com valência emocional neutra pode ser mais sensível em relação às manifestações iniciais de condições patológicas, inclusive demências.

2.
Mov Disord ; 25(11): 1590-6, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20623771

ABSTRACT

Among nonmotor symptoms observed in Parkinson's disease (PD) dysfunction in the visual system, including hallucinations, has a significant impact in their quality of life. To further explore the visual system in PD patients we designed two fMRI experiments comparing 18 healthy volunteers with 16 PD patients without visual complaints in two visual fMRI paradigms: the flickering checkerboard task and a facial perception paradigm. PD patients displayed a decreased activity in the primary visual cortex (Broadmann area 17) bilaterally as compared to healthy volunteers during flickering checkerboard task and increased activity in fusiform gyrus (Broadmann area 37) during facial perception paradigm. Our findings confirm the notion that PD patients show significant changes in the visual cortex system even before the visual symptoms are clinically evident. Further studies are necessary to evaluate the contribution of these abnormalities to the development visual symptoms in PD.


Subject(s)
Parkinson Disease/complications , Parkinson Disease/pathology , Pattern Recognition, Visual/physiology , Perceptual Disorders/etiology , Visual Cortex/physiopathology , Aged , Analysis of Variance , Face , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neurologic Examination/methods , Neuropsychological Tests , Oxygen/blood , Photic Stimulation/methods , Statistics as Topic , Visual Cortex/blood supply , Visual Pathways/blood supply , Visual Pathways/physiopathology
3.
Neuroimage ; 47(2): 467-72, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19398020

ABSTRACT

Depression is the most frequent psychiatric disorder in Parkinson's disease (PD). Although evidence suggests that depression in PD is related to the degenerative process that underlies the disease, further studies are necessary to better understand the neural basis of depression in this population of patients. In order to investigate neuronal alterations underlying the depression in PD, we studied thirty-six patients with idiopathic PD. Twenty of these patients had the diagnosis of major depression disorder and sixteen did not. The two groups were matched for PD motor severity according to Unified Parkinson Disease Rating Scale (UPDRS). First we conducted a functional magnetic resonance imaging (fMRI) using an event-related parametric emotional perception paradigm with test retest design. Our results showed decreased activation in the left mediodorsal (MD) thalamus and in medial prefrontal cortex in PD patients with depression compared to those without depression. Based upon these results and the increased neuron count in MD thalamus found in previous studies, we conducted a region of interest (ROI) guided voxel-based morphometry (VBM) study comparing the thalamic volume. Our results showed an increased volume in mediodorsal thalamic nuclei bilaterally. Converging morphological changes and functional emotional processing in mediodorsal thalamus highlight the importance of limbic thalamus in PD depression. In addition this data supports the link between neurodegenerative alterations and mood regulation.


Subject(s)
Depression/diagnosis , Depression/pathology , Limbic System/pathology , Magnetic Resonance Imaging/methods , Parkinson Disease/complications , Parkinson Disease/diagnosis , Thalamus/pathology , Humans , Imaging, Three-Dimensional , Male , Middle Aged
4.
Int J Neuropsychopharmacol ; 11(2): 173-83, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17708780

ABSTRACT

The mechanisms underlying the effects of antidepressant treatment in patients with Parkinson's disease (PD) are unclear. The neural changes after successful therapy investigated by neuroimaging methods can give insights into the mechanisms of action related to a specific treatment choice. To study the mechanisms of neural modulation of repetitive transcranial magnetic stimulation (rTMS) and fluoxetine, 21 PD depressed patients were randomized into only two active treatment groups for 4 wk: active rTMS over left dorsolateral prefrontal cortex (DLPFC) (5 Hz rTMS; 120% motor threshold) with placebo pill and sham rTMS with fluoxetine 20 mg/d. Event-related functional magnetic resonance imaging (fMRI) with emotional stimuli was performed before and after treatment - in two sessions (test and re-test) at each time-point. The two groups of treatment had a significant, similar mood improvement. After rTMS treatment, there were brain activity decreases in left fusiform gyrus, cerebellum and right DLPFC and brain activity increases in left DLPFC and anterior cingulate gyrus compared to baseline. In contrast, after fluoxetine treatment, there were brain activity increases in right premotor and right medial prefrontal cortex. There was a significant interaction effect between groups vs. time in the left medial prefrontal cortex, suggesting that the activity in this area changed differently in the two treatment groups. Our findings show that antidepressant effects of rTMS and fluoxetine in PD are associated with changes in different areas of the depression-related neural network.


Subject(s)
Antidepressive Agents, Second-Generation/therapeutic use , Brain Mapping/methods , Depressive Disorder, Major/therapy , Fluoxetine/therapeutic use , Magnetic Resonance Imaging , Parkinson Disease/psychology , Prefrontal Cortex/drug effects , Transcranial Magnetic Stimulation , Affect/drug effects , Aged , Combined Modality Therapy , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/etiology , Depressive Disorder, Major/physiopathology , Emotions/drug effects , Evoked Potentials , Humans , Middle Aged , Parkinson Disease/drug therapy , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Prefrontal Cortex/physiopathology , Psychiatric Status Rating Scales , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL