Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 111(7): 1419-1433, 2023 07.
Article in English | MEDLINE | ID: mdl-36840674

ABSTRACT

Wound dressings are one of the most used treatments for chronic wounds. Moreover, 3D printing has been emerging as a promising strategy for printing 3D printed wound constructs, being able of manufacturing multi layers, with a solid 3D structure. Although all these promising effects of 3D printed wound constructs, there is still few studies and limited understanding of the interaction of these dressings with skin tissue and their effect on the process of skin wound healing. In this context, the aim of this work was to perform a systematic review of the literature to examine the effects of 3D printed wound constructs on the process of skin wound healing in animal models. The articles were selected from three databases following Medical Subject Headings (MeSH) descriptors "3D printing," "skin," "wound," and "in vivo." After the selection, exclusion and inclusion criteria, nine articles were analyzed. This review confirms the significant benefits of using 3D printed wound constructs for skin repair and regeneration. All the used inks demonstrated the ability of mimicking the structure of skin tissue and promoting cell adhesion, proliferation, migration, and mobility. Furthermore, in vivo findings showed full wound closure in most of the studies, with well-organized dermal and epidermal layers.


Subject(s)
Skin , Tissue Engineering , Animals , Models, Animal , Cell Adhesion , Printing, Three-Dimensional
2.
J Biomed Mater Res B Appl Biomater ; 111(1): 203-219, 2023 01.
Article in English | MEDLINE | ID: mdl-35906778

ABSTRACT

The use of 3D-printed hydroxyapatite (HA) scaffolds for stimulating bone healing has been increasing over the years. Although all the promising effects of these scaffolds, there are still few studies and limited understanding of their interaction with bone tissue and their effects on the process of fracture healing. In this context, this study aimed to perform a systematic literature review examining the effects of different 3D-printed HA scaffolds in bone healing. The search was made according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) orientations and Medical Subject Headings (MeSH) descriptors "3D printing," "bone," "HA," "repair," and "in vivo." Thirty-six articles were retrieved from PubMed and Scopus databases. After eligibility analyses, 20 papers were included (covering the period of 2016 and 2021). Results demonstrated that all the studies included in this review showed positive outcomes, indicating the efficacy of scaffolds treated groups in the in vivo experiments for promoting bone healing in different animal models. In conclusion, 3D-printed HA scaffolds are excellent candidates as bone grafts due to their bioactivity and good bone interaction.


Subject(s)
Durapatite , Tissue Engineering , Animals , Durapatite/pharmacology , Tissue Scaffolds , Bone and Bones , Printing, Three-Dimensional , Bone Regeneration
3.
Mar Biotechnol (NY) ; 23(1): 1-11, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33404918

ABSTRACT

Collagen (Col) from marine organisms has been emerging as an important alternative for commercial Col and it has been considered highly attractive by the industry. Despite the positive effects of Col from marine origin, there is still limited understanding of the effects of this natural biomaterial in the process of wound healing in animal studies. In this context, the purpose of this study was to perform a systematic review of the literature to examine the effects of Col from different marine species in the process of skin tissue healing using experimental models of skin wound. The search was carried out according to the orientations of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), and the descriptors of the Medical Subject Headings (MeSH) were defined: "marine collagen," "spongin," "spongin," "skin," and "wound." A total of 42 articles were retrieved from the databases PubMed and Scopus. After the eligibility analyses, this review covers the different marine sources of Col reported in 10 different papers from the beginning of 2011 through the middle of 2019. The results were based mainly on histological analysis and it demonstrated that Col-based treatment resulted in a higher deposition of granulation tissue, stimulation of re-epitalization and neoangiogenesis and increased amount of Col of the wound, culminating in a more mature morphological aspect. In conclusion, this review demonstrates that marine Col from different species presented positive effects on the process of wound skin healing in experimental models used, demonstrating the huge potential of this biomaterial for tissue engineering proposals.


Subject(s)
Aquatic Organisms/chemistry , Collagen/pharmacology , Wound Healing/drug effects , Animals , Biocompatible Materials/pharmacology , Collagen/chemistry , Peptides/pharmacology , Skin/drug effects , Skin/injuries
4.
Acta sci., Biol. sci ; 43: e57856, 2021. ilus, graf
Article in English | LILACS, VETINDEX | ID: biblio-1460995

ABSTRACT

This study evaluated the physicochemical and morphological properties of a marine sponge protein extract (PE) using scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), analysis of mass loss and pH and in vitro and in vivo. Scanning electron microscopy showed that PE fibers present a granular aspect and irregular structure and the element carbon followed by oxygen was detected in the EDS analysis. Moreover, a 29% of mass loss was observed after 14 days and the pH slightly modified after 14 days. Cell viability of fibroblast cells (L929) of control and PE at a concentration of 25% demonstrated higher values compared to the groups. Osteoblast cell viability of PE at 25 and 50% was significantly higher. Comet assay on day 1 showed higher values for PE at 25%. In addition, in vivo experiments demonstrated that in the treated animals, the bone defects were filled with biomaterial particles, granulation tissue and some areas of newly formed bone. Furthermore, similar immunoexpression of Runx-2 and Cox-2 was observed. Taken together, all results suggest that PE is biocompatible, present non-citotoxicity in the in vitro studies (at the lower concentration) and in the in vivo studies and it can be considered as an alternative source of collagen for tissue engineering proposals.


Subject(s)
Porifera/chemistry , Cytotoxicity Tests, Immunologic , Mutagenicity Tests , In Vitro Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...