Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 111(1): 39-47, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38181734

ABSTRACT

Craniofacial phenotyping is critical for both syndrome delineation and diagnosis because craniofacial abnormalities occur in 30% of characterized genetic syndromes. Clinical reports, textbooks, and available software tools typically provide two-dimensional, static images and illustrations of the characteristic phenotypes of genetic syndromes. In this work, we provide an interactive web application that provides three-dimensional, dynamic visualizations for the characteristic craniofacial effects of 95 syndromes. Users can visualize syndrome facial appearance estimates quantified from data and easily compare craniofacial phenotypes of different syndromes. Our application also provides a map of morphological similarity between a target syndrome and other syndromes. Finally, users can upload 3D facial scans of individuals and compare them to our syndrome atlas estimates. In summary, we provide an interactive reference for the craniofacial phenotypes of syndromes that allows for precise, individual-specific comparisons of dysmorphology.


Subject(s)
Face , Software , Humans , Facies , Phenotype , Syndrome
2.
Laryngoscope ; 133(8): 1952-1960, 2023 08.
Article in English | MEDLINE | ID: mdl-36226791

ABSTRACT

OBJECTIVES: Diagnostic tools for voice disorders are lacking for primary care physicians. Artificial intelligence (AI) tools may add to the armamentarium for physicians, decreasing the time to diagnosis and limiting the burden of dysphonia. METHODS: Voice recordings of patients were collected from 2019 to 2021 using smartphones. The Saarbruecken dataset was included for comparison. Audio files were converted to mel-spectrograms using TensorFlow. Diagnostic categories were created to group pathology, including neurological and muscular disorders, inflammatory, mass lesions, and normal. The samples were further separated into sustained/a/and the rainbow passage. RESULTS: Two hundred three prospective samples and 1131 samples were used from the Saarbruecken database. The AI detected abnormal pathology with an F1-score of 98%. The artificial neural network (ANN) differentiated key pathologies, including unilateral paralysis, laryngitis, adductor spasmodic dysphonia (ADSD), mass lesions, and normal samples with 39%-87% F-1 scores. The Calgary database models had higher F-1 scores in a head-to-head comparison to the Saarbruecken and combined datasets (87% vs. 58% and 50%). The AI outperformed otolaryngologists using a standardized test set of recordings (83% compared to 55% ± 15%). CONCLUSION: An AI tool was created to differentiate pathology by individual or categorical diagnosis with high evaluation metrics. Prospective data should be collected in a controlled fashion to reduce intrinsic variability between recordings. Multi-center data collaborations are imperative to increase the prediction capability of AI tools for detecting vocal cord pathology. We provide proof-of-concept for an AI tool to assist primary care physicians in managing dysphonic patients. LEVEL OF EVIDENCE: 3 Laryngoscope, 133:1952-1960, 2023.


Subject(s)
Dysphonia , Humans , Dysphonia/diagnosis , Vocal Cords , Artificial Intelligence , Prospective Studies , Primary Health Care
SELECTION OF CITATIONS
SEARCH DETAIL
...