Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Lab Chip ; 24(8): 2224-2236, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38456212

ABSTRACT

Automated high-throughput liquid handling operations in biolabs necessitate miniaturised and automatised equipment for effective space utilisation and system integration. This paper presents a thermal segment microwell plate control unit designed for enhanced microwell-based experimentation in liquid handling setups. The development of this device stems from the need to move towards geometry standardization and system integration of automated lab equipment. It incorporates features based on Smart Sensor and Sensor 4.0 concepts. An enzymatic activity assay is implemented with the developed device on a liquid handling station, allowing fast characterisation via a high-throughput approach. The device outperforms other comparable devices in certain metrics based on automated liquid handling requirements and addresses the needs of future biolabs in automation, especially in high-throughput screening.

2.
Bioengineering (Basel) ; 10(7)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37508835

ABSTRACT

The bacterium Escherichia coli is a widely used organism in biotechnology. For high space-time yields, glucose-limited fed-batch technology is the industry standard; this is because an overflow metabolism of acetate occurs at high glucose concentrations. As an interesting alternative, various strains with limited glucose uptake have been developed. However, these have not yet been characterized under process conditions. To demonstrate the efficiency of our previously developed high-throughput robotic platform, in the present work, we characterized three different exemplary E. coli knockout (KO) strains with limited glucose uptake capacities at three different scales (microtiter plates, 10 mL bioreactor system and 100 mL bioreactor system) under excess glucose conditions with different initial glucose concentrations. The extensive measurements of growth behavior, substrate consumption, respiration, and overflow metabolism were then used to determine the appropriate growth parameters using a mechanistic mathematical model, which allowed for a comprehensive comparative analysis of the strains. The analysis was performed coherently with these different reactor configurations and the results could be successfully transferred from one platform to another. Single and double KO mutants showed reduced specific rates for substrate uptake qSmax and acetate production qApmax; meanwhile, higher glucose concentrations had adverse effects on the biomass yield coefficient YXSem. Additional parameters compared to previous studies for the oxygen uptake rate and carbon dioxide production rate indicated differences in the specific oxygen uptake rate qOmax. This study is an example of how automated robotic equipment, together with mathematical model-based approaches, can be successfully used to characterize strains and obtain comprehensive information more quickly, with a trade-off between throughput and analytical capacity.

3.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37047056

ABSTRACT

Nucleoside analogues are important compounds for the treatment of viral infections or cancers. While (chemo-)enzymatic synthesis is a valuable alternative to traditional chemical methods, the feasibility of such processes is lowered by the high production cost of the biocatalyst. As continuous enzyme membrane reactors (EMR) allow the use of biocatalysts until their full inactivation, they offer a valuable alternative to batch enzymatic reactions with freely dissolved enzymes. In EMRs, the enzymes are retained in the reactor by a suitable membrane. Immobilization on carrier materials, and the associated losses in enzyme activity, can thus be avoided. Therefore, we validated the applicability of EMRs for the synthesis of natural and dihalogenated nucleosides, using one-pot transglycosylation reactions. Over a period of 55 days, 2'-deoxyadenosine was produced continuously, with a product yield >90%. The dihalogenated nucleoside analogues 2,6-dichloropurine-2'-deoxyribonucleoside and 6-chloro-2-fluoro-2'-deoxyribonucleoside were also produced, with high conversion, but for shorter operation times, of 14 and 5.5 days, respectively. The EMR performed with specific productivities comparable to batch reactions. However, in the EMR, 220, 40, and 9 times more product per enzymatic unit was produced, for 2'-deoxyadenosine, 2,6-dichloropurine-2'-deoxyribonucleoside, and 6-chloro-2-fluoro-2'-deoxyribonucleoside, respectively. The application of the EMR using freely dissolved enzymes, facilitates a continuous process with integrated biocatalyst separation, which reduces the overall cost of the biocatalyst and enhances the downstream processing of nucleoside production.


Subject(s)
Nucleosides , Pentosyltransferases , Nucleosides/chemistry , Pentosyltransferases/metabolism , Enzymes, Immobilized/chemistry , Biocatalysis , Deoxyribonucleosides , Purine-Nucleoside Phosphorylase/metabolism
4.
Adv Biochem Eng Biotechnol ; 182: 61-82, 2022.
Article in English | MEDLINE | ID: mdl-35861884

ABSTRACT

Typical product development in biotechnological laboratories is a distributed and versatile process. Today's biotechnological laboratory devices are usually equipped with multiple sensors and a variety of interfaces. The existing software for biotechnological research and development is often specialized on specific tasks and thus generates task-specific information. Scientific personnel is confronted with an abundance of information from a variety of sources. Hence a comprehensive software backbone that structures the developmental process and maintains data from various sources is missing. Thus, it is not possible to maintain data access, documentation, reporting, availability, and proper data exchange. This chapter envisions a comprehensive digital infrastructure handling the data throughout an enzymatic product development process in a laboratory. The platform integrates a variety of software products, databases, and devices to make all product development life cycle (PDLC) data available and accessible to the scientific staff.


Subject(s)
Laboratories , Software , Databases, Factual , Humans
5.
Adv Biochem Eng Biotechnol ; 177: 1-28, 2021.
Article in English | MEDLINE | ID: mdl-33381857

ABSTRACT

Typically, bioprocesses on an industrial scale are dynamic systems with a certain degree of variability, system inhomogeneities, and even population heterogeneities. Therefore, the scaling of such processes from laboratory to industrial scale and vice versa is not a trivial task. Traditional scale-down methodologies consider several technical parameters, so that systems on the laboratory scale tend to qualitatively reflect large-scale effects, but not the dynamic situation in an industrial bioreactor over the entire process, from the perspective of a cell. Supported by the enormous increase in computing power, the latest scientific focus is on the application of dynamic models, in combination with computational fluid dynamics to quantitatively describe cell behavior. These models allow the description of possible cellular lifelines which in turn can be used to derive a regime analysis for scale-down experiments. However, the approaches described so far, which were for a very few process examples, are very labor- and time-intensive and cannot be validated easily. In parallel, alternatives have been developed based on the description of the industrial process with hybrid process models, which describe a process mechanistically as far as possible in order to determine the essential process parameters with their respective variances. On-line analytical methods allow the characterization of population heterogeneity directly in the process. This detailed information from the industrial process can be used in laboratory screening systems to select relevant conditions in which the cell and process related parameters reflect the situation in the industrial scale. In our opinion, these technologies, which are available in research for modeling biological systems, in combination with process analytical techniques are so far developed that they can be implemented in industrial routines for faster development of new processes and optimization of existing ones.


Subject(s)
Bioreactors
6.
Bioengineering (Basel) ; 7(4)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187191

ABSTRACT

In bioprocess development, the host and the genetic construct for a new biomanufacturing process are selected in the early developmental stages. This decision, made at the screening scale with very limited information about the performance in larger reactors, has a major influence on the efficiency of the final process. To overcome this, scale-down approaches during screenings that show the real cell factory performance at industrial-like conditions are essential. We present a fully automated robotic facility with 24 parallel mini-bioreactors that is operated by a model-based adaptive input design framework for the characterization of clone libraries under scale-down conditions. The cultivation operation strategies are computed and continuously refined based on a macro-kinetic growth model that is continuously re-fitted to the available experimental data. The added value of the approach is demonstrated with 24 parallel fed-batch cultivations in a mini-bioreactor system with eight different Escherichia coli strains in triplicate. The 24 fed-batch cultivations were run under the desired conditions, generating sufficient information to define the fastest-growing strain in an environment with oscillating glucose concentrations similar to industrial-scale bioreactors.

7.
Biotechnol J ; 15(1): e1900172, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31486583

ABSTRACT

In this age of technology, the vision of manufacturing industries built of smart factories is not a farfetched future. As a prerequisite for Industry 4.0, industrial sectors are moving towards digitalization and automation. Despite its tremendous growth reaching a sales value of worth $188 billion in 2017, the biopharmaceutical sector distinctly lags in this transition. Currently, the challenges are innovative market disruptions such as personalized medicine as well as increasing commercial pressure for faster and cheaper product manufacturing. Improvements in digitalization and data analytics have been identified as key strategic activities for the next years to face these challenges. Alongside, there is an emphasis by the regulatory authorities on the use of advanced technologies, proclaimed through initiatives such as Quality by Design (QbD) and Process Analytical Technology (PAT). In the manufacturing sector, the biopharmaceutical domain features some of the most complex and least understood processes. Thereby, process models that can transform process data into more valuable information, guide decision-making, and support the creation of digital and automated technologies are key enablers. This review summarizes the current state of model-based methods in different bioprocess related applications and presents the corresponding future vision for the biopharmaceutical industry to achieve the goals of Industry 4.0 while meeting the regulatory requirements.


Subject(s)
Biopharmaceutics , Biotechnology , Drug Industry , Models, Biological , Automation, Laboratory , Humans , Research Design
8.
Biotechnol Bioeng ; 116(11): 2906-2918, 2019 11.
Article in English | MEDLINE | ID: mdl-31317526

ABSTRACT

Concentration gradients that occur in large industrial-scale bioreactors due to mass transfer limitations have significant effects on process efficiency. Hence, it is desirable to investigate the response of strains to such heterogeneities to reduce the risk of failure during process scale-up. Although there are various scale-down techniques to study these effects, scale-down strategies are rarely applied in the early developmental phases of a bioprocess, as they have not yet been implemented on small-scale parallel cultivation devices. In this study, we combine mechanistic growth models with a parallel mini-bioreactor system to create a high-throughput platform for studying the response of Escherichia coli strains to concentration gradients. As a scaled-down approach, a model-based glucose pulse feeding scheme is applied and compared with a continuous feed profile to study the influence of glucose and dissolved oxygen gradients on both cell physiology and incorporation of noncanonical amino acids into recombinant proinsulin. The results show a significant increase in the incorporation of the noncanonical amino acid norvaline in the soluble intracellular extract and in the recombinant product in cultures with glucose/oxygen oscillations. Interestingly, the amount of norvaline depends on the pulse frequency and is negligible with continuous feeding, confirming observations from large-scale cultivations. Most importantly, the results also show that a larger number of the model parameters are significantly affected by the scale-down scheme, compared with the reference cultivations. In this example, it was possible to describe the effects of oscillations in a single parallel experiment. The platform offers the opportunity to combine strain screening with scale-down studies to select the most robust strains for bioprocess scale-up.


Subject(s)
Batch Cell Culture Techniques , Bioreactors , Escherichia coli/growth & development , Models, Biological
9.
SLAS Technol ; 24(6): 569-582, 2019 12.
Article in English | MEDLINE | ID: mdl-31288593

ABSTRACT

During process development, the experimental search space is defined by the number of experiments that can be performed in specific time frames but also by its sophistication (e.g., inputs, sensors, sampling frequency, analytics). High-throughput liquid-handling stations can perform a large number of automated experiments in parallel. Nevertheless, the experimental data sets that are obtained are not always relevant for development of industrial bioprocesses, leading to a high rate of failure during scale-up. We present an automated mini bioreactor platform that enables parallel cultivations in the milliliter scale with online monitoring and control, well-controlled conditions, and advanced feeding strategies similar to industrial processes. The combination of two liquid handlers allows both automated mini bioreactor operation and at-line analysis in parallel. A central database enables end-to-end data exchange and fully integrated device and process control. A model-based operation algorithm allows for the accurate performance of complex cultivations for scale-down studies and strain characterization via optimal experimental redesign, significantly increasing the reliability and transferability of data throughout process development. The platform meets the tradeoff between experimental throughput and process control and monitoring comparable to laboratory-scale bioreactors.


Subject(s)
Automation, Laboratory/standards , Bioreactors , Escherichia coli/growth & development , Robotics/instrumentation , Algorithms , Biotechnology , Escherichia coli/genetics , High-Throughput Screening Assays , Humans , Isopropyl Thiogalactoside , Miniaturization , Proinsulin/genetics , Proinsulin/metabolism , Software
10.
Article in English | MEDLINE | ID: mdl-31179278

ABSTRACT

Especially in biomanufacturing, methods to design optimal experiments are a valuable technique to fully exploit the potential of the emerging technical possibilities that are driving experimental miniaturization and parallelization. The general objective is to reduce the experimental effort while maximizing the information content of an experiment, speeding up knowledge gain in R&D. The approach of model-based design of experiments (known as MBDoE) utilizes the information of an underlying mathematical model describing the system of interest. A common method to predict the accuracy of the parameter estimates uses the Fisher information matrix to approximate the 90% confidence intervals of the estimates. However, for highly non-linear models, this method might lead to wrong conclusions. In such cases, Monte Carlo sampling gives a more accurate insight into the parameter's estimate probability distribution and should be exploited to assess the reliability of the approximations made through the Fisher information matrix. We first introduce the model-based optimal experimental design for parameter estimation including parameter identification and validation by means of a simple non-linear Michaelis-Menten kinetic and show why Monte Carlo simulations give a more accurate depiction of the parameter uncertainty. Secondly, we propose a very robust and simple method to find optimal experimental designs using Monte Carlo simulations. Although computational expensive, the method is easy to implement and parallelize. This article focuses on practical examples of bioprocess engineering but is generally applicable in other fields.

11.
Bioengineering (Basel) ; 5(4)2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30469407

ABSTRACT

Mini-bioreactor systems enabling automatized operation of numerous parallel cultivations are a promising alternative to accelerate and optimize bioprocess development allowing for sophisticated cultivation experiments in high throughput. These include fed-batch and continuous cultivations with multiple options of process control and sample analysis which deliver valuable screening tools for industrial production. However, the model-based methods needed to operate these robotic facilities efficiently considering the complexity of biological processes are missing. We present an automated experiment facility that integrates online data handling, visualization and treatment using multivariate analysis approaches to design and operate dynamical experimental campaigns in up to 48 mini-bioreactors (8⁻12 mL) in parallel. In this study, the characterization of Saccharomyces cerevisiae AH22 secreting recombinant endopolygalacturonase is performed, running and comparing 16 experimental conditions in triplicate. Data-driven multivariate methods were developed to allow for fast, automated decision making as well as online predictive data analysis regarding endopolygalacturonase production. Using dynamic process information, a cultivation with abnormal behavior could be detected by principal component analysis as well as two clusters of similarly behaving cultivations, later classified according to the feeding rate. By decision tree analysis, cultivation conditions leading to an optimal recombinant product formation could be identified automatically. The developed method is easily adaptable to different strains and cultivation strategies, and suitable for automatized process development reducing the experimental times and costs.

12.
Microorganisms ; 6(3)2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29941834

ABSTRACT

Metabolic engineering and genome editing strategies often lead to large strain libraries of a bacterial host. Nevertheless, the generation of competent cells is the basis for transformation and subsequent screening of these strains. While preparation of competent cells is a standard procedure in flask cultivations, parallelization becomes a challenging task when working with larger libraries and liquid handling stations as transformation efficiency depends on a distinct physiological state of the cells. We present a robust method for the preparation of competent cells and their transformation. The strength of the method is that all cells on the plate can be maintained at a high growth rate until all cultures have reached a defined cell density regardless of growth rate and lag phase variabilities. This allows sufficient transformation in automated high throughput facilities and solves important scheduling issues in wet-lab library screenings. We address the problem of different growth rates, lag phases, and initial cell densities inspired by the characteristics of continuous cultures. The method functions on a fully automated liquid handling platform including all steps from the inoculation of the liquid cultures to plating and incubation on agar plates. The key advantage of the developed method is that it enables cell harvest in 96 well plates at a predefined time by keeping fast growing cells in the exponential phase as in turbidostat cultivations. This is done by a periodic monitoring of cell growth and a controlled dilution specific for each well. With the described methodology, we were able to transform different strains in parallel. The transformants produced can be picked and used in further automated screening experiments. This method offers the possibility to transform any combination of strain- and plasmid library in an automated high-throughput system, overcoming an important bottleneck in the high-throughput screening and the overall chain of bioprocess development.

13.
Bioprocess Biosyst Eng ; 41(9): 1305-1313, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29808419

ABSTRACT

Large-scale bioreactors are inhomogeneous systems, in which the fluid phase expresses concentration gradients. They depend on the mass transfer and fluid dynamics in the reactor, the feeding strategy, the cell-specific substrate uptake parameters, and the cell density. As high cell densities are only obtained at low specific growth rates, it is necessary to investigate the cellular responses to oscillations in particular under such conditions, an issue which is mostly neglected. Instead, the feed oscillations are often started directly after the batch phase, when the specific growth rate is close to the maximum. We show here that the cultivation mode before oscillations are started has a tremendous effect on the metabolic responses. In difference to cells, which were pre-grown under batch conditions at a high growth rate, Escherichia coli cells that were pre-grown under glucose limitation at a low growth rate accumulate short-chain fatty acids (acetate, lactate, succinate) and glycolysis-related amino acids to a higher extent in a two-compartment scale-down bioreactor. Thus, cells which enter oscillations from a lower specific growth rate seem to react more sensitive to oscillations than cells that are subjected to oscillations directly after a batch phase. These results are interesting in designing reliable scale-down systems, which better reflect large-scale bioprocesses.


Subject(s)
Biological Clocks , Escherichia coli K12/growth & development , Fatty Acids/biosynthesis , Glucose/metabolism
14.
Eng Life Sci ; 17(11): 1195-1201, 2017 Nov.
Article in English | MEDLINE | ID: mdl-32624747

ABSTRACT

Bioprocess development, optimization, and control in mini-bioreactor systems require information about essential process parameters, high data densities, and the ability to dynamically change process conditions. We present an integration approach combining a parallel mini-bioreactor system integrated into a liquid handling station (LHS) with a second LHS for offline analytics. Non-invasive sensors measure pH and DO online. Offline samples are collected every 20 min and acetate, glucose, and OD620 subsequently analyzed offline. All data are automatically collected, analyzed, formalized, and used for process control and optimization. Fed-batch conditions are realized via a slow enzymatic glucose release system. The integration approach was successfully used to apply an online experimental re-design method to eight Escherichia coli fed-batch cultivations. The method utilizes generated data to select the following experimental actions online in order to reach the optimization goal of estimating E. coli fed-batch model parameters with as high accuracy as possible. Optimal experimental designs were re-calculated online based on the experimental data and implemented by introducing pulses via the LHS to the running fermentations. The LHS control allows for various implementations of advanced control and optimization strategies in milliliter scale.

15.
Eng Life Sci ; 17(11): 1215-1220, 2017 Nov.
Article in English | MEDLINE | ID: mdl-32624749

ABSTRACT

Saccharomyces cerevisiae is a popular expression system for recombinant proteins. In most cases, production processes are performed as carbon-limited fed-batch cultures to avoid aerobic ethanol formation. Especially for constitutive expression systems, the specific product formation rate depends on the specific growth rate. The development of optimal feeding strategies strongly depends on laboratory-scale cultivations, which are time and resource consuming, especially when continuous experiments are carried out. It is therefore beneficial for accelerated process development to look at alternatives. In this study, S. cerevisiae AH22 secreting a heterologous endo-polygalacturonase (EPG) was characterized in microwell plates with an enzyme-based fed-batch medium. Through variation of the glucose release rate, different growth profiles were established and the impact on EPG secretion was analyzed. Product formation rates of 200-400 U (gx h)-1 were determined. As a reference, bioreactor experiments using the change-stat cultivation technique were performed. The growth-dependent product formation was analyzed over dilution rates of D = 0.01-0.35 with smooth change of D at a rate of 0.003 h-2. EPG production was found to be comparable with a qp of 400 U (gx h)-1 at D = 0.27 h-1. The presented results indicate that parallel miniaturized fed-batch cultures can be applied to determine product formation profiles of putative production strains. With further automation and parallelization of the concept, strain characterization can be performed in shorter time.

SELECTION OF CITATIONS
SEARCH DETAIL
...