Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 8(9)2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31487903

ABSTRACT

Glyphosate is a cheap herbicide that has been used to control a wide range of weeds (4-6 times/year) in citrus groves of the Gulf of Mexico; however, its excessive use has selected for glyphosate-resistant weeds. We evaluated the efficacy and economic viability of 13 herbicide treatments (glyphosate combined with PRE- and/or POST-emergence herbicides and other alternative treatments), applied in tank-mixture or sequence, to control glyphosate-resistant weeds in two Persian lime groves (referred to as SM-I and SM-II) of the municipality of Acateno, Puebla, during two years (2014 and 2015). The SM-I and SM-II fields had 243 and 346 weeds/m2, respectively, composed mainly of Bidens pilosa and Leptochloa virgata. Echinochloa colona was also frequent in SM-II. The glyphosate alone treatments (1080, 1440, or 1800 g ae ha-1) presented control levels of the total weed population ranging from 64% to 85% at 15, 30, and 45 d after treatment (DAT) in both fields. Mixtures of glyphosate with grass herbicides such as fluazifop-p-butyl, sethoxydim, and clethodim efficiently controlled E. colona and L. virgata, but favored the regrowth of B. pilosa. The sequential applications of glyphosate + (bromacil + diuron) and glufosinate + oxyfluorfen controlled more than 85% the total weed community for more than 75 days. However, these treatments were between 360% and 390% more expensive (1.79 and 1.89 $/day ha-1 of satisfactory weed control, respectively), compared to the representative treatment (glyphosate 1080 g ae ha-1 = USD $29.0 ha-1). In practical and economic terms, glufosinate alone was the best treatment controlling glyphosate resistant weeds maintaining control levels >80% for at least 60 DAT ($1.35/day ha-1). The rest of the treatments, applied in tank-mix or in sequence with glyphosate, had similar or lower control levels (~70%) than glyphosate at 1080 g ae ha-1. The adoption of glufosiante alone, glufosinate + oxyfluorfen or glyphosate + (bromacil + diuron) must consider the cost of satisfactory weed control per day, the period of weed control, as well as other factors associated with production costs to obtain an integrated weed management in the short and long term.

2.
Pestic Biochem Physiol ; 155: 1-7, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30857618

ABSTRACT

Continuous use of glyphosate in citrus groves in the Gulf of Mexico region has selected for resistant Parthenium hysterophorus L. populations. In this study, the target-site and non-target-site resistance mechanisms were characterized in three putative glyphosate-resistant (GR) P. hysterophorus populations, collected in citrus groves from Acateno, Puebla (GR1 and GR2) and Martínez de la Torre, Veracruz (GR3), and compared with a susceptible population (GS). Based on plant mortality, the GR populations were 9.2-17.3 times more resistant to glyphosate than the GS population. The low shikimate accumulation in the GR population confirmed this resistance. Based on plant mortality and shikimate accumulation, the GR3 population showed intermediate resistance to glyphosate. The GR populations absorbed 15-28% less 14C-glyphosate than the GS population (78.7% absorbed from the applied) and retained 48.7-70.7% of 14C-glyphosate in the treated leaf, while the GS population translocated ~68% of absorbed herbicide to shoots and roots. The GR3 population showed the lowest translocation and absorption rates, but was found to be susceptible at the target site level. The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene sequence of the GR1 and GR2 populations showed the Pro106-Ser mutation, conferring 19- and 25-times more resistance in comparison to the GS population, respectively. Reduced absorption and impaired translocation conferred glyphosate resistance on the GR3 population, and contributed partially to the resistance of the GR1 and GR2 populations. Additionally, the Pro-106-Ser mutation increased the glyphosate resistance of the last two P. hysterophorus populations.


Subject(s)
Glycine/analogs & derivatives , Herbicides/pharmacology , Tanacetum parthenium/drug effects , Tanacetum parthenium/metabolism , 3-Phosphoshikimate 1-Carboxyvinyltransferase , Glycine/pharmacology , Herbicide Resistance , Mutation/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/metabolism , Glyphosate
3.
Pest Manag Sci ; 75(3): 648-657, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30066483

ABSTRACT

BACKGROUND: Conventional crossing of soft wheat cultivars resistant to imazamox and glufosinate resulted in two (Rados and Helter) lines resistant to both herbicides. Stacked traits conferring this dual herbicide resistance in these lines, compared with a susceptible (S) cultivar, were characterized. RESULTS: Rados and Helter lines were ∼ 18-fold more resistant (R) to glufosinate, and between 15.1 and 19.8-fold more resistant to imazamox than the S cultivar. Resistance to glufosinate and imazamox decreased up to 12% and 50%, respectively, when the herbicides were applied sequentially. The basal activities of the acetolactate and glutamine synthases were similar between R and S plants. Rados and Helter lines were 11.7- and 17.7-fold more resistant to imazamox than the S cultivar, due to the Ser653-Asn mutation in their imi-ALS genes. R lines, susceptible to glufosinate at the target site level, showed lower ammonia accumulation evidencing the activity of the phosphinothricin acetyl transferase. Absorption and translocation patterns for 14 C-imazamox and 14 C-glufosinate were similar between R and S cultivars and so do not contribute to resistance. CONCLUSION: Stacked traits conferring dual herbicide resistance to the lines Rados and Helter come from the resistant parents. These R lines are potential tools for weed management in wheat production, mainly via herbicide rotation. © 2018 Society of Chemical Industry.


Subject(s)
Aminobutyrates/pharmacology , Herbicide Resistance/genetics , Imidazoles/pharmacology , Triticum/genetics , Acetolactate Synthase , Aminobutyrates/metabolism , Glutamate-Ammonia Ligase , Herbicides/pharmacology , Imidazoles/metabolism , Triticum/enzymology
4.
Pest Manag Sci ; 74(5): 1118-1124, 2018 May.
Article in English | MEDLINE | ID: mdl-29384251

ABSTRACT

BACKGROUND: Susceptibility and the mechanism (s) governing tolerance/resistance to glyphosate were characterized in two putative-glyphosate-resistant Chloris barbata populations (R1 and R2), collected in Persian lime orchards from Colima State, Mexico, comparing them with one non-treated population (referred to as S). RESULTS: Glyphosate doses required to reduce fresh weight or cause mortality by 50% were 4.2-6.4 times higher in resistant populations than in the S population. The S population accumulated 4.3 and 5.2 times more shikimate than the R2 and R1 populations, respectively. There were no differences in 14 C-glyphosate uptake between R and S populations, but the R plants translocated at least 12% less herbicide to the rest of plant and roots 96 h after treatment. Insignificant amounts of glyphosate were metabolized to aminomethyl phosphonate and glyoxylate in both R and S plants. The 5-enolpyruvylshikimate-3-phosphate synthase gene of the R populations contained the Pro106-Ser mutation, giving them a resistance 12 (R2) and 14.7 (R1) times greater at target-site level compared with the S population. CONCLUSION: The Pro106-Ser mutation governs the resistance to glyphosate of the R1 and R2 C barbata populations, but the impaired translocation could contribute to the resistance. These results confirm the first case of glyphosate resistance evolved in this species. © 2018 Society of Chemical Industry.


Subject(s)
3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Glycine/analogs & derivatives , Herbicide Resistance/genetics , Herbicides/pharmacology , Plant Proteins/genetics , Poaceae/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/chemistry , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Amino Acid Sequence , Glycine/pharmacology , Mexico , Mutation , Plant Proteins/chemistry , Plant Proteins/metabolism , Poaceae/drug effects , Sequence Alignment , Glyphosate
6.
Plant Physiol Biochem ; 115: 212-218, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28384561

ABSTRACT

Following the introduction of glyphosate-resistant (GR)-cotton crops in Mexico, farmers have relied upon glyphosate as being the only herbicide for in-season weed control. Continuous use of glyphosate within the same year and over multiple successive years has resulted in the selection of glyphosate resistance in Palmer amaranth (Amarantus palmeri). Dose-response assays confirmed resistance in seven different accessions. The resistance ratio based on GR50 values (50% growth reduction) varied between 12 and 83. At 1000 µM glyphosate, shikimic acid accumulation in the S-accession was 30- to 2-fold higher at compared to R-accessions. At 96 h after treatment, 35-44% and 61% of applied 14C-glyphosate was taken up by leaves of plants from R- and S-accessions, respectively. At this time, a significantly higher proportion of the glyphosate absorbed remained in the treated leaf of R-plants (55-69%) compared to S-plants (36%). Glyphosate metabolism was low and did not differ between resistant and susceptible plants. Glyphosate was differentially metabolized to AMPA and glyoxylate in plants of R- and S-accessions, although it was low in both accessions (<10%). There were differences in 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme activity by 50% (I50) between R- and S-accessions. However, no significant differences were found in the basal EPSPS activity (µmol inorganic phosphate µg-1 total soluble protein min-1) between R- and S-accessions. A point mutation Pro-106-Ser was evidenced in three accessions. The results confirmed the resistance of Palmer amaranth accessions to glyphosate collected from GR-cotton crops from Mexico. This is the first study demonstrating glyphosate-resistance in Palmer amaranth from Mexico.


Subject(s)
Amaranthus/drug effects , Glycine/analogs & derivatives , Herbicides/pharmacology , Amaranthus/genetics , Amaranthus/metabolism , Glycine/pharmacology , Herbicide Resistance , Mutation , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Weeds/genetics , Shikimic Acid , Glyphosate
7.
J Agric Food Chem ; 60(2): 615-22, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22175446

ABSTRACT

Digitaria insularis biotypes resistant to glyphosate have been detected in Brazil. Studies were carried out in controlled conditions to determine the role of absorption, translocation, metabolism, and gene mutation as mechanisms of glyphosate resistance in D. insularis. The susceptible biotype absorbed at least 12% more (14)C-glyphosate up to 48 h after treatment (HAT) than resistant biotypes. High differential (14)C-glyphosate translocation was observed at 12 HAT, so that >70% of the absorbed herbicide remained in the treated leaf in resistant biotypes, whereas 42% remained in the susceptible biotype at 96 HAT. Glyphosate was degraded to aminomethylphosphonic acid (AMPA), glyoxylate, and sarcosine by >90% in resistant biotypes, whereas a small amount of herbicide (up to 11%) was degraded by the susceptible biotype up to 168 HAT. Two amino acid changes were found at positions 182 and 310 in EPSPS, consisting of a proline to threonine and a tyrosine to cysteine substitution, respectively, in resistant biotypes. Therefore, absorption, translocation, metabolism, and gene mutation play an important role in the D. insularis glyphosate resistance.


Subject(s)
Digitaria/drug effects , Digitaria/physiology , Glycine/analogs & derivatives , Herbicide Resistance , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Brazil , Glycine/pharmacokinetics , Glycine/pharmacology , Glyoxylates/metabolism , Herbicides/pharmacology , Isoxazoles , Mutation , Organophosphonates/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Sarcosine/metabolism , Shikimic Acid/analysis , Shikimic Acid/metabolism , Tetrazoles , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...