Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Genet ; 14: 1135438, 2023.
Article in English | MEDLINE | ID: mdl-37035729

ABSTRACT

Background: Laminopathies are caused by rare alterations in LMNA, leading to a wide clinical spectrum. Though muscular dystrophy begins at early ages, disease progression is different in each patient. We investigated variability in laminopathy phenotypes by performing a targeted genetic analysis of patients diagnosed with LMNA-related muscular dystrophy to identify rare variants in alternative genes, thereby explaining phenotypic differences. Methods: We analyzed 105 genes associated with muscular diseases by targeted sequencing in 26 pediatric patients of different countries, diagnosed with any LMNA-related muscular dystrophy. Family members were also clinically assessed and genetically analyzed. Results: All patients carried a pathogenic rare variant in LMNA. Clinical diagnoses included Emery-Dreifuss muscular dystrophy (EDMD, 13 patients), LMNA-related congenital muscular dystrophy (L-CMD, 11 patients), and limb-girdle muscular dystrophy 1B (LGMD1B, 2 patients). In 9 patients, 10 additional rare genetic variants were identified in 8 genes other than LMNA. Genotype-phenotype correlation showed additional deleterious rare variants in five of the nine patients (3 L-CMD and 2 EDMD) with severe phenotypes. Conclusion: Analysis f known genes related to muscular diseases in close correlation with personalized clinical assessments may help identify additional rare variants of LMNA potentially associated with early onset or most severe disease progression.

2.
Front Cardiovasc Med ; 10: 1164028, 2023.
Article in English | MEDLINE | ID: mdl-37082456

ABSTRACT

Long QT Syndrome (LQTS) is a rare, inherited channelopathy characterized by cardiac repolarization dysfunction, leading to a prolonged rate-corrected QT interval in patients who are at risk for malignant ventricular tachyarrhythmias, syncope, and even sudden cardiac death. A complex genetic origin, variable expressivity as well as incomplete penetrance make the diagnosis a clinical challenge. In the last 10 years, there has been a continuous improvement in diagnostic and personalized treatment options. Therefore, several factors such as sex, age diagnosis, QTc interval, and genetic background may contribute to risk stratification of patients, but it still currently remains as a main challenge in LQTS. It is widely accepted that sex is a risk factor itself for some arrhythmias. Female sex has been suggested as a risk factor in the development of malignant arrhythmias associated with LQTS. The existing differences between the sexes are only manifested after puberty, being the hormones the main inducers of arrhythmias. Despite the increased risk in females, no more than 10% of the available publications on LQTS include sex-related data concerning the risk of malignant arrhythmias in females. Therein, the relevance of our review data update concerning women and LQTS.

3.
Front Cell Dev Biol ; 11: 1142937, 2023.
Article in English | MEDLINE | ID: mdl-36968203

ABSTRACT

Introduction: LMNA-related muscular dystrophy is a rare entity that produce "laminopathies" such as Emery-Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy type 1B (LGMD1B), and LMNA-related congenital muscular dystrophy (L-CMD). Heart failure, malignant arrhythmias, and sudden death may occur. No consensus exists on cardiovascular management in pediatric laminopathies. The aim was to perform an exhaustive cardiologic follow-up in pediatric patients diagnosed with LMNA-related muscular dystrophy. Methods: Baseline cardiac work-up consisted of clinical assessment, transthoracic Doppler echocardiography, 12-lead electrocardiogram, electrophysiological study, and implantation of a long-term implantable cardiac loop recorder (ILR). Results: We enrolled twenty-eight pediatric patients diagnosed with EDMD (13 patients), L-CMD (11 patients), LGMD1B (2 patients), and LMNA-related mild weakness (2 patients). Follow-up showed dilated cardiomyopathy (DCM) in six patients and malignant arrhythmias in five (four concomitant with DCM) detected by the ILR that required implantable cardioverter defibrillator (ICD) implantation. Malignant arrhythmias were detected in 20% of our cohort and early-onset EDMD showed worse cardiac prognosis. Discussion: Patients diagnosed with early-onset EDMD are at higher risk of DCM, while potentially life-threatening arrhythmias without DCM appear earlier in L-CMD patients. Early onset neurologic symptoms could be related with worse cardiac prognosis. Specific clinical guidelines for children are needed to prevent sudden death.

4.
Front Med (Lausanne) ; 10: 1118585, 2023.
Article in English | MEDLINE | ID: mdl-36844202

ABSTRACT

In the forensic medicine field, molecular autopsy is the post-mortem genetic analysis performed to attempt to unravel the cause of decease in cases remaining unexplained after a comprehensive forensic autopsy. This negative autopsy, classified as negative or non-conclusive, usually occurs in young population. In these cases, in which the cause of death is unascertained after a thorough autopsy, an underlying inherited arrhythmogenic syndrome is the main suspected cause of death. Next-generation sequencing allows a rapid and cost-effectives genetic analysis, identifying a rare variant classified as potentially pathogenic in up to 25% of sudden death cases in young population. The first symptom of an inherited arrhythmogenic disease may be a malignant arrhythmia, and even sudden death. Early identification of a pathogenic genetic alteration associated with an inherited arrhythmogenic syndrome may help to adopt preventive personalized measures to reduce risk of malignant arrhythmias and sudden death in the victim's relatives, at risk despite being asymptomatic. The current main challenge is a proper genetic interpretation of variants identified and useful clinical translation. The implications of this personalized translational medicine are multifaceted, requiring the dedication of a specialized team, including forensic scientists, pathologists, cardiologists, pediatric cardiologists, and geneticists.

5.
Int J Legal Med ; 137(2): 345-351, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36693943

ABSTRACT

Sudden death cases in the young population remain without a conclusive cause of decease in almost 40% of cases. In these situations, cardiac arrhythmia of genetic origin is suspected as the most plausible cause of death. Molecular autopsy may reveal a genetic defect in up to 20% of families. Most than 80% of rare variants remain classified with an ambiguous role, impeding a useful clinical translation. Our aim was to update rare variants originally classified as of unknown significance to clarify their role. Our cohort included fifty-one post-mortem samples of young cases who died suddenly and without a definite cause of death. Five years ago, molecular autopsy identified at least one rare genetic alteration classified then as ambiguous following the American College of Medical Genetics and Genomics' recommendations. We have reclassified the same rare variants including novel data. About 10% of ambiguous variants change to benign/likely benign mainly because of improved population frequencies. Excluding cases who died before one year of age, almost 21% of rare ambiguous variants change to benign/likely benign. This fact makes it important to discard these rare variants as a cause of sudden unexplained death, avoiding anxiety in relatives' carriers. Twenty-five percent of the remaining variants show a tendency to suspicious deleterious role, highlighting clinical follow-up of carriers. Periodical reclassification of rare variants originally classified as ambiguous is crucial, at least updating frequencies every 5 years. This action aids to increase accuracy to enable and conclude a cause of death as well as translation into the clinic.


Subject(s)
Arrhythmias, Cardiac , Death, Sudden , Humans , Death, Sudden/etiology , Mutation , Gene Frequency , Autopsy , Death, Sudden, Cardiac/etiology
6.
J Clin Med ; 11(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35956023

ABSTRACT

Brugada syndrome (BrS) is classified as an inherited cardiac channelopathy attributed to dysfunctional ion channels and/or associated proteins in cardiomyocytes rather than to structural heart alterations. However, hearts of some BrS patients exhibit slight histologic abnormalities, suggesting that BrS could be a phenotypic variant of arrhythmogenic cardiomyopathy. We performed a systematic review of the literature following Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement (PRISMA) criteria. Our comprehensive analysis of structural findings did not reveal enough definitive evidence for reclassification of BrS as a cardiomyopathy. The collection and comprehensive analysis of new cases with a definitive BrS diagnosis are needed to clarify whether some of these structural features may have key roles in the pathophysiological pathways associated with malignant arrhythmogenic episodes.

7.
J Cardiovasc Dev Dis ; 9(4)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35448085

ABSTRACT

We report a pediatric patient with persistent left superior vena cava and a D-transposition of great arteries, which is an uncommon relation. It is crucial to know the anatomy of the persistent left superior vena cava and the dilated coronary sinus to plan the mapping techniques in cases of posterior accessory pathways.

8.
Front Cardiovasc Med ; 9: 874992, 2022.
Article in English | MEDLINE | ID: mdl-35479286

ABSTRACT

Brugada syndrome (BrS) was initially described in 1992 by Josep and Pedro Brugada as an arrhythmogenic disease characterized by ST segment elevation in the right precordial leads and increased risk of sudden cardiac death (SCD). Alterations in the SCN5A gene are responsible for approximately 30% of cases of BrS, following an autosomal dominant pattern of inheritance. However, despite its autosomal transmission, sex-related differences are widely accepted. BrS is more prevalent in males than in females (8-10 times), with males having a 5.5-fold higher risk of SCD. There are also differences in clinical presentation, with females being more frequently asymptomatic and older than males at the time of diagnosis. Some factors have been identified that could explain these differences, among which testosterone seems to play an important role. However, only 30% of the available publications on the syndrome include sex-related information. Therefore, current findings on BrS are based on studies conducted mainly in male population, despite the wide acceptance of gender differences. The inclusion of complete clinical and demographic information in future publications would allow a better understanding of the phenotypic variability of BrS in different age and sex groups helping to improve the diagnosis, management and risk management of SCD.

9.
J Pers Med ; 12(2)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35207729

ABSTRACT

The titin gene (TTN) is associated with several diseases, including inherited arrhythmias. Most of these diagnoses are attributed to rare TTN variants encoding truncated forms, but missense variants represent a diagnostic challenge for clinical genetics. The proper interpretation of genetic data is critical for translation into the clinical setting. Notably, many TTN variants were classified before 2015, when the American College of Medical Genetics and Genomics (ACMG) published recommendations to accurately classify genetic variants. Our aim was to perform an exhaustive reanalysis of rare missense TTN variants that were classified before 2015, and that have ambiguous roles in inherited arrhythmogenic syndromes. Rare missense TTN variants classified before 2015 were updated following the ACMG recommendations and according to all the currently available data. Our cohort included 193 individuals definitively diagnosed with an inherited arrhythmogenic syndrome before 2015. Our analysis resulted in the reclassification of 36.8% of the missense variants from unknown to benign/likely benign. Of all the remaining variants, currently classified as of unknown significance, 38.3% showed a potential, but not confirmed, deleterious role. Most of these rare missense TTN variants with a suspected deleterious role were identified in patients diagnosed with hypertrophic cardiomyopathy. More than 35% of the rare missense TTN variants previously classified as ambiguous were reclassified as not deleterious, mainly because of improved population frequencies. Despite being inconclusive, almost 40% of the variants showed a potentially deleterious role in inherited arrhythmogenic syndromes. Our results highlight the importance of the periodical reclassification of rare missense TTN variants to improve genetic diagnoses and help increase the accuracy of personalized medicine.

10.
Biomedicines ; 10(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35052786

ABSTRACT

Sudden death is a rare event in the pediatric population but with a social shock due to its presentation as the first symptom in previously healthy children. Comprehensive autopsy in pediatric cases identify an inconclusive cause in 40-50% of cases. In such cases, a diagnosis of sudden arrhythmic death syndrome is suggested as the main potential cause of death. Molecular autopsy identifies nearly 30% of cases under 16 years of age carrying a pathogenic/potentially pathogenic alteration in genes associated with any inherited arrhythmogenic disease. In the last few years, despite the increasing rate of post-mortem genetic diagnosis, many families still remain without a conclusive genetic cause of the unexpected death. Current challenges in genetic diagnosis are the establishment of a correct genotype-phenotype association between genes and inherited arrhythmogenic disease, as well as the classification of variants of uncertain significance. In this review, we provide an update on the state of the art in the genetic diagnosis of inherited arrhythmogenic disease in the pediatric population. We focus on emerging publications on gene curation for genotype-phenotype associations, cases of genetic overlap and advances in the classification of variants of uncertain significance. Our goal is to facilitate the translation of genetic diagnosis to the clinical area, helping risk stratification, treatment and the genetic counselling of families.

11.
Front Pediatr ; 9: 704580, 2021.
Article in English | MEDLINE | ID: mdl-34395343

ABSTRACT

Introduction: Long QT syndrome is the main arrhythmogenic disease responsible for sudden death in infants, especially in the first days of life. Performing an electrocardiogram in newborns could enable early diagnosis and adoption of therapeutic measures focused on preventing lethal arrhythmogenic events. However, the inclusion of an electrocardiogram in neonatal screening protocols still remains a matter of discussion. To comprehensively analyse the potential clinical value of performing an electrocardiogram and subsequent follow-up in a cohort of newborns. Methods: Electrocardiograms were performed in 685 neonates within the first week of life. One year follow-up was performed if QTc > 450 ms identified. Comprehensive genetic analysis using massive sequencing was performed in all cases with QTc > 470 ms. Results: We identified 54 neonates with QTc > 450 ms/ <470 ms; all normalized QTc values within 6 months. Eight cases had QTc > 480 ms at birth and, if persistent, pharmacological treatment was administrated during follow-up. A rare variant was identified as the potential cause of long QT syndrome in five cases. Three cases showed a family history of sudden arrhythmogenic death. Conclusions: Our prospective study identifies 0.14% of cases with a definite long QT, supporting implementation of electrocardiograms in routine pediatric protocols. It is an effective, simple and non-invasive approach that can help prevent sudden death in neonates and their relatives. Genetic analyses help to unravel the cause of arrhythmogenic disease in diagnosing neonates. Further, clinical assessment and genetic analysis of relatives allowed early identification of family members at risk of arrhythmias helping to adopt preventive personalized measures.

12.
Front Pediatr ; 8: 601708, 2020.
Article in English | MEDLINE | ID: mdl-33692971

ABSTRACT

Aim: To perform a comprehensive phenotype-genotype correlation of all rare variants in Triadin leading to malignant arrhythmias in pediatrics. Methods: Triadin knockout syndrome is a rare entity reported in pediatric population. This syndrome is caused by rare variants in the TRDN gene. Malignant ventricular arrhythmias and sudden cardiac death can be a primary manifestation of disease. Although pharmacological measures are effective, some patients require an implantable defibrillator due to high risk of arrhythmogenic episodes. Main Results: Fourteen rare genetic alterations in TRDN have been reported to date. All of these potentially pathogenic alterations are located in a specific area of TRDN, highlighting this hot spot as an arrhythmogenic gene region. Conclusions: Early recognition and comprehensive interpretation of alterations in Triadin are crucial to adopt preventive measures and avoid malignant arrhythmogenic episodes in pediatric population.

SELECTION OF CITATIONS
SEARCH DETAIL
...