Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Thorac Dis ; 9(10): 4070-4083, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29268418

ABSTRACT

Cardiogenic shock (CS) continues to have high mortality and morbidity despite advances in pharmacological, mechanical, and reperfusion approaches to treatment. When CS is refractory to medical therapy, percutaneous mechanical circulatory support (MCS) should be considered. Acute MCS devices, ranging from intra-aortic balloon pumps (IABPs) to percutaneous temporary ventricular assist devices (VAD) to extracorporeal membrane oxygenation (ECMO), can aid, restore, or maintain appropriate tissue perfusion before the development of irreversible end-organ damage. Technology has improved patient survival to recovery from CS, but in patients whom cardiac recovery does not occur, acute MCS can be effectively utilized as a bridge to long-term MCS devices and/or heart transplantation. Heart transplantation has been limited by donor heart availability, leading to a greater role of left ventricular assist device (LVAD) support. In patients with biventricular failure that are ineligible for LVAD implantation, further advancements in the total artificial heart (TAH) may allow for improved survival compared to medical therapy alone. In this review, we discuss the current state of acute and durable MCS, ongoing advances in LVADs and TAH devices, improved methods of durable MCS implantation and patient selection, and future MCS developments in this dynamic field that may allow for optimization of HF treatment.

2.
J Am Heart Assoc ; 6(8)2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28862969

ABSTRACT

BACKGROUND: Structural remodeling of human atria plays a key role in sustaining atrial fibrillation (AF), but insufficient quantitative analysis of human atrial structure impedes the treatment of AF. We aimed to develop a novel 3-dimensional (3D) structural and computational simulation analysis tool that could reveal the structural contributors to human reentrant AF drivers. METHODS AND RESULTS: High-resolution panoramic epicardial optical mapping of the coronary-perfused explanted intact human atria (63-year-old woman, chronic hypertension, heart weight 608 g) was conducted during sinus rhythm and sustained AF maintained by spatially stable reentrant AF drivers in the left and right atrium. The whole atria (107×61×85 mm3) were then imaged with contrast-enhancement MRI (9.4 T, 180×180×360-µm3 resolution). The entire 3D human atria were analyzed for wall thickness (0.4-11.7 mm), myofiber orientations, and transmural fibrosis (36.9% subendocardium; 14.2% midwall; 3.4% subepicardium). The 3D computational analysis revealed that a specific combination of wall thickness and fibrosis ranges were primarily present in the optically defined AF driver regions versus nondriver tissue. Finally, a 3D human heart-specific atrial computer model was developed by integrating 3D structural and functional mapping data to test AF induction, maintenance, and ablation strategies. This 3D model reproduced the optically defined reentrant AF drivers, which were uninducible when fibrosis and myofiber anisotropy were removed from the model. CONCLUSIONS: Our novel 3D computational high-resolution framework may be used to quantitatively analyze structural substrates, such as wall thickness, myofiber orientation, and fibrosis, underlying localized AF drivers, and aid the development of new patient-specific treatments.


Subject(s)
Action Potentials , Atrial Fibrillation/diagnostic imaging , Atrial Remodeling , Epicardial Mapping , Heart Atria/diagnostic imaging , Heart Rate , Magnetic Resonance Imaging , Models, Cardiovascular , Patient-Specific Modeling , Atrial Fibrillation/pathology , Atrial Fibrillation/physiopathology , Atrial Fibrillation/surgery , Catheter Ablation , Female , Fibrosis , Heart Atria/pathology , Heart Atria/physiopathology , Heart Atria/surgery , Humans , Middle Aged , Predictive Value of Tests , Time Factors
3.
Sci Transl Med ; 9(400)2017 07 26.
Article in English | MEDLINE | ID: mdl-28747516

ABSTRACT

The human sinoatrial node (SAN) efficiently maintains heart rhythm even under adverse conditions. However, the specific mechanisms involved in the human SAN's ability to prevent rhythm failure, also referred to as its robustness, are unknown. Challenges exist because the three-dimensional (3D) intramural structure of the human SAN differs from well-studied animal models, and clinical electrode recordings are limited to only surface atrial activation. Hence, to innovate the translational study of human SAN structural and functional robustness, we integrated intramural optical mapping, 3D histology reconstruction, and molecular mapping of the ex vivo human heart. When challenged with adenosine or atrial pacing, redundant intranodal pacemakers within the human SAN maintained automaticity and delivered electrical impulses to the atria through sinoatrial conduction pathways (SACPs), thereby ensuring a fail-safe mechanism for robust maintenance of sinus rhythm. During adenosine perturbation, the primary central SAN pacemaker was suppressed, whereas previously inactive superior or inferior intranodal pacemakers took over automaticity maintenance. Sinus rhythm was also rescued by activation of another SACP when the preferential SACP was suppressed, suggesting two independent fail-safe mechanisms for automaticity and conduction. The fail-safe mechanism in response to adenosine challenge is orchestrated by heterogeneous differences in adenosine A1 receptors and downstream GIRK4 channel protein expressions across the SAN complex. Only failure of all pacemakers and/or SACPs resulted in SAN arrest or conduction block. Our results unmasked reserve mechanisms that protect the human SAN pacemaker and conduction complex from rhythm failure, which may contribute to treatment of SAN arrhythmias.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Sinoatrial Node/metabolism , Sinoatrial Node/physiology , Action Potentials/drug effects , Adenosine/pharmacology , Adult , Aged , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/prevention & control , Electrocardiography , Female , Heart Atria/metabolism , Heart Rate/drug effects , Humans , In Vitro Techniques , Middle Aged , Sinoatrial Node/drug effects
4.
Eur Heart J Cardiovasc Imaging ; 18(8): 862-869, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28087602

ABSTRACT

AIMS: The adult human sinoatrial node (SAN) has a specialized fibrotic intramural structure (35-55% fibrotic tissue) that provides mechanical and electrical protection from the surrounding atria. We hypothesize that late gadolinium-enhanced cardiovascular magnetic resonance (LGE-CMR) can be applied to define the fibrotic human SAN structure in vivo. METHODS AND RESULTS: LGE-CMR atrial scans of healthy volunteers (n olu, 23-52 y.o.) using a 3 Tesla magnetic resonance imaging system with a spatial resolution of 1.0 mm3 or 0.625 × 0.625 × 1.25 mm3 were obtained and analysed. Percent fibrosis of total connective and cardiomyocyte tissue area in segmented atrial regions were measured based on signal intensity differences of fibrotic vs. non-fibrotic cardiomyocyte tissue. A distinct ellipsoidal fibrotic region (length: 23.6 ± 1.9 mm; width: 7.2 ± 0.9 mm; depth: 2.9 ± 0.4 mm) in all hearts was observed along the posterior junction of the crista terminalis and superior vena cava extending towards the interatrial septum, corresponding to the anatomical location of the human SAN. The SAN fibrotic region consisted of 41.9 ± 5.4% of LGE voxels above an average threshold of 2.7 SD (range 2-3 SD) from the non-fibrotic right atrial free wall tissue. Fibrosis quantification and SAN identification by in vivo LGE-CMR were validated in optically mapped explanted donor hearts ex vivo (n ivo, 19-65 y.o.) by contrast-enhanced CMR (9.4 Tesla; up to 90 µm3 resolution) correlated with serial histological sections of the SAN. CONCLUSION: This is the first study to visualize the 3D human SAN fibrotic structure in vivo using LGE-CMR. Identification of the 3D SAN location and its high fibrotic content by LGE-CMR may provide a new tool to avoid or target SAN structure during ablation.


Subject(s)
Gadolinium , Magnetic Resonance Imaging, Cine/methods , Radiographic Image Enhancement , Sinoatrial Node/diagnostic imaging , Adult , Contrast Media , Female , Fibrosis/diagnostic imaging , Fibrosis/pathology , Healthy Volunteers , Humans , Male , Middle Aged , Predictive Value of Tests , Sensitivity and Specificity , Sinoatrial Node/pathology , Young Adult
5.
Trends Cardiovasc Med ; 27(1): 1-11, 2017 01.
Article in English | MEDLINE | ID: mdl-27492815

ABSTRACT

Although there have been great technological advances in the treatment of atrial fibrillation (AF), current therapies remain limited due to a narrow understanding of AF mechanisms in the human heart. This review will highlight our recent studies on explanted human hearts where we developed and employed a novel functional-structural mapping approach by integrating high-resolution simultaneous endo-epicardial and panoramic optical mapping with 3D gadolinium-enhanced MRI to define the spatiotemporal characteristics of AF drivers and their structural substrates. The results allow us to postulate that the primary mechanism of AF maintenance in human hearts is a limited number of localized intramural microanatomic reentrant AF drivers anchored to heart-specific 3D fibrotically insulated myobundle tracks, which may remain hidden to clinical single-surface electrode mapping. We suggest that ex vivo human heart studies, by using an integrated 3D functional and structural mapping approach, will help to reveal defining features of AF drivers as well as validate and improve clinical approaches to detect and target these AF drivers in patients with cardiac diseases.


Subject(s)
Atrial Fibrillation/physiopathology , Heart Atria/physiopathology , Heart Conduction System/physiopathology , Heart Rate , Isolated Heart Preparation , Action Potentials , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/etiology , Atrial Fibrillation/surgery , Catheter Ablation , Contrast Media , Fibrosis , Heart Atria/diagnostic imaging , Heart Atria/surgery , Heart Conduction System/diagnostic imaging , Heart Conduction System/surgery , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods , Predictive Value of Tests , Risk Factors , Voltage-Sensitive Dye Imaging
7.
Circulation ; 134(6): 486-98, 2016 Aug 09.
Article in English | MEDLINE | ID: mdl-27462069

ABSTRACT

BACKGROUND: Adenosine provokes atrial fibrillation (AF) with a higher activation frequency in right atria (RA) versus left atria (LA) in patients, but the underlying molecular and functional substrates are unclear. We tested the hypothesis that adenosine-induced AF is driven by localized reentry in RA areas with highest expression of adenosine A1 receptor and its downstream GIRK (G protein-coupled inwardly rectifying potassium channels) channels (IK,Ado). METHODS: We applied biatrial optical mapping and immunoblot mapping of various atrial regions to reveal the mechanism of adenosine-induced AF in explanted failing and nonfailing human hearts (n=37). RESULTS: Optical mapping of coronary-perfused atria (n=24) revealed that adenosine perfusion (10-100 µmol/L) produced more significant shortening of action potential durations in RA (from 290±45 to 239±41 ms, 17.3±10.4%; P<0.01) than LA (from 307±24 to 286±23 ms, 6.7±6.6%; P<0.01). In 10 hearts, adenosine induced AF (317±116 s) that, when sustained (≥2 minutes), was primarily maintained by 1 to 2 localized reentrant drivers in lateral RA. Tertiapin (10-100 nmol/L), a selective GIRK channel blocker, counteracted adenosine-induced action potential duration shortening and prevented AF induction. Immunoblotting showed that the superior/middle lateral RA had significantly higher adenosine A1 receptor (2.7±1.7-fold; P<0.01) and GIRK4 (1.7±0.8-fold; P<0.05) protein expression than lateral/posterior LA. CONCLUSIONS: This study revealed a 3-fold RA-to-LA adenosine A1 receptor protein expression gradient in the human heart, leading to significantly greater RA versus LA repolarization sensitivity in response to adenosine. Sustained adenosine-induced AF is maintained by reentrant drivers localized in lateral RA regions with the highest adenosine A1 receptor/GIRK4 expression. Selective atrial GIRK channel blockade may effectively treat AF during conditions with increased endogenous adenosine.


Subject(s)
Adenosine/toxicity , Atrial Fibrillation/chemically induced , Atrial Fibrillation/metabolism , G Protein-Coupled Inwardly-Rectifying Potassium Channels/biosynthesis , Heart Atria/metabolism , Receptor, Adenosine A1/biosynthesis , Adult , Aged , Female , Gene Expression Regulation , Heart/diagnostic imaging , Heart/drug effects , Heart Atria/diagnostic imaging , Heart Atria/drug effects , Heart Conduction System/diagnostic imaging , Heart Conduction System/drug effects , Heart Conduction System/metabolism , Humans , Male , Middle Aged , Organ Culture Techniques , Positron Emission Tomography Computed Tomography
8.
Prog Biophys Mol Biol ; 120(1-3): 164-78, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26743207

ABSTRACT

INTRODUCTION: Despite a century of extensive study on the human sinoatrial node (SAN), the structure-to-function features of specialized SAN conduction pathways (SACP) are still unknown and debated. We report a new method for direct analysis of the SAN microstructure in optically-mapped human hearts with and without clinical history of SAN dysfunction. METHODS: Two explanted donor human hearts were coronary-perfused and optically-mapped. Structural analyses of histological sections parallel to epicardium (∼13-21 µm intervals) were integrated with optical maps to create 3D computational reconstructions of the SAN complex. High-resolution fiber fields were obtained using 3D Eigen-analysis of the structure tensor, and used to analyze SACP microstructure with a fiber-tracking approach. RESULTS: Optical mapping revealed normal SAN activation of the atria through a lateral SACP proximal to the crista terminalis in Heart #1 but persistent SAN exit block in diseased Heart #2. 3D structural analysis displayed a functionally-observed SAN border composed of fibrosis, fat, and/or discontinuous fibers between SAN and atria, which was only crossed by several branching myofiber tracts in SACP regions. Computational 3D fiber-tracking revealed that myofiber tracts of SACPs created continuous connections between SAN #1 and atria, but in SAN #2, SACP region myofiber tracts were discontinuous due to fibrosis and fat. CONCLUSIONS: We developed a new integrative functional, structural and computational approach that allowed for the resolution of the specialized 3D microstructure of human SACPs for the first time. Application of this integrated approach will shed new light on the role of the specialized SAN microanatomy in maintaining sinus rhythm.


Subject(s)
Heart Conduction System/anatomy & histology , Models, Anatomic , Sinoatrial Node/anatomy & histology , Sinoatrial Node/physiology , Biological Clocks , Heart Conduction System/cytology , Heart Conduction System/physiology , Humans , Sinoatrial Node/cytology
10.
Proc Natl Acad Sci U S A ; 112(40): 12528-33, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26392562

ABSTRACT

Nav channels are essential for metazoan membrane depolarization, and Nav channel dysfunction is directly linked with epilepsy, ataxia, pain, arrhythmia, myotonia, and irritable bowel syndrome. Human Nav channelopathies are primarily caused by variants that directly affect Nav channel permeability or gating. However, a new class of human Nav channelopathies has emerged based on channel variants that alter regulation by intracellular signaling or cytoskeletal proteins. Fibroblast growth factor homologous factors (FHFs) are a family of intracellular signaling proteins linked with Nav channel regulation in neurons and myocytes. However, to date, there is surprisingly little evidence linking Nav channel gene variants with FHFs and human disease. Here, we provide, to our knowledge, the first evidence that mutations in SCN5A (encodes primary cardiac Nav channel Nav1.5) that alter FHF binding result in human cardiovascular disease. We describe a five*generation kindred with a history of atrial and ventricular arrhythmias, cardiac arrest, and sudden cardiac death. Affected family members harbor a novel SCN5A variant resulting in p.H1849R. p.H1849R is localized in the central binding core on Nav1.5 for FHFs. Consistent with these data, Nav1.5 p.H1849R affected interaction with FHFs. Further, electrophysiological analysis identified Nav1.5 p.H1849R as a gain-of-function for INa by altering steady-state inactivation and slowing the rate of Nav1.5 inactivation. In line with these data and consistent with human cardiac phenotypes, myocytes expressing Nav1.5 p.H1849R displayed prolonged action potential duration and arrhythmogenic afterdepolarizations. Together, these findings identify a previously unexplored mechanism for human Nav channelopathy based on altered Nav1.5 association with FHF proteins.


Subject(s)
Arrhythmias, Cardiac/genetics , Fibroblast Growth Factors/metabolism , Mutation, Missense , NAV1.5 Voltage-Gated Sodium Channel/genetics , Action Potentials/genetics , Action Potentials/physiology , Animals , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Cells, Cultured , Channelopathies/genetics , Channelopathies/metabolism , Channelopathies/physiopathology , Family Health , Female , Genetic Predisposition to Disease/genetics , HEK293 Cells , Humans , Immunoblotting , Male , Mice, Inbred C57BL , Mice, Transgenic , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Patch-Clamp Techniques , Pedigree , Protein Binding
11.
Circ Arrhythm Electrophysiol ; 8(5): 1219-27, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26304511

ABSTRACT

BACKGROUND: The hyperpolarization-activated current, If, plays an important role in sinoatrial node (SAN) pacemaking. Surprisingly, the distribution of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in human SAN has only been investigated at the mRNA level. Our aim was to define the expression pattern of HCN proteins in human SAN and different atrial regions. METHODS AND RESULTS: Entire SAN complexes were isolated from failing (n=5) and nonfailing (n=9) human hearts cardioplegically arrested in the operating room. Three-dimensional intramural SAN structure was identified as the fibrotic compact region around the SAN artery with Connexin 43-negative pacemaker cardiomyocytes visualized in Masson's trichrome and immunostained cryosections. SAN protein was precisely isolated from the adjacent frozen SAN tissue blocks using a 16G biopsy needle. The purity of the SAN protein was confirmed by Connexin 43 immunoblot. All 3 HCN isoform proteins were detected in SAN. HCN1 was predominantly distributed in the human SAN with a 125.1±40.2 (n=12) expression ratio of SAN to right atrium. HCN2 and HCN4 expression levels were higher in SAN than in atria, with SAN to right atrium ratios of 6.1±0.9 and 4.6±0.6 (n=12), respectively. CONCLUSIONS: This is the first study to conduct precise 3D molecular mapping of the human SAN by isolating pure pacemaker SAN tissue. All 3 cardiac HCN isoforms had higher expression in the SAN than in the atria. HCN1 was almost exclusively expressed in SAN, emphasizing its utility as a new specific molecular marker of the human SAN and as a potential target of specific treatments intended to modify sinus rhythm.


Subject(s)
Heart Failure/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Myocytes, Cardiac/metabolism , Sinoatrial Node/metabolism , Adult , Aged , Female , Humans , Immunoblotting , Male , Middle Aged , Muscle Proteins/metabolism , Potassium Channels/metabolism , Protein Isoforms/metabolism
12.
Eur Heart J ; 36(35): 2390-401, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26059724

ABSTRACT

AIMS: The complex architecture of the human atria may create physical substrates for sustained re-entry to drive atrial fibrillation (AF). The existence of sustained, anatomically defined AF drivers in humans has been challenged partly due to the lack of simultaneous endocardial-epicardial (Endo-Epi) mapping coupled with high-resolution 3D structural imaging. METHODS AND RESULTS: Coronary-perfused human right atria from explanted diseased hearts (n = 8, 43-72 years old) were optically mapped simultaneously by three high-resolution CMOS cameras (two aligned Endo-Epi views (330 µm2 resolution) and one panoramic view). 3D gadolinium-enhanced magnetic resonance imaging (GE-MRI, 80 µm3 resolution) revealed the atrial wall structure varied in thickness (1.0 ± 0.7-6.8 ± 2.4 mm), transmural fiber angle differences, and interstitial fibrosis causing transmural activation delay from 23 ± 11 to 43 ± 22 ms at increased pacing rates. Sustained AF (>90 min) was induced by burst pacing during pinacidil (30-100 µM) perfusion. Dual-sided sub-Endo-sub-Epi optical mapping revealed that AF was driven by spatially and temporally stable intramural re-entry with 107 ± 50 ms cycle length and transmural activation delay of 67 ± 31 ms. Intramural re-entrant drivers were captured primarily by sub-Endo mapping, while sub-Epi mapping visualized re-entry or 'breakthrough' patterns. Re-entrant drivers were anchored on 3D micro-anatomic tracks (15.4 ± 2.2 × 6.0 ± 2.3 mm2, 2.9 ± 0.9 mm depth) formed by atrial musculature characterized by increased transmural fiber angle differences and interstitial fibrosis. Targeted radiofrequency ablation of the tracks verified these re-entries as drivers of AF. CONCLUSIONS: Integrated 3D structural-functional mapping of diseased human right atria ex vivo revealed that the complex atrial microstructure caused significant differences between Endo vs. Epi activation during pacing and sustained AF driven by intramural re-entry anchored to fibrosis-insulated atrial bundles.


Subject(s)
Atrial Fibrillation/pathology , Heart Atria/pathology , Adult , Aged , Atrial Fibrillation/etiology , Atrial Fibrillation/physiopathology , Cardiac Imaging Techniques , Contrast Media , Epicardial Mapping/methods , Gadolinium , Heart Atria/physiopathology , Humans , Magnetic Resonance Angiography/methods , Middle Aged
13.
Int J Mol Sci ; 16(5): 10834-54, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25984605

ABSTRACT

Atrial fibrillation (AF) is the most common heart rhythm disturbance, and its treatment is an increasing economic burden on the health care system. Despite recent intense clinical, experimental and basic research activity, the treatment of AF with current antiarrhythmic drugs and catheter/surgical therapies remains limited. Radiofrequency catheter ablation (RFCA) is widely used to treat patients with AF. Current clinical ablation strategies are largely based on atrial anatomy and/or substrate detected using different approaches, and they vary from one clinical center to another. The nature of clinical ablation leads to ambiguity regarding the optimal patient personalization of the therapy partly due to the fact that each empirical configuration of ablation lines made in a patient is irreversible during one ablation procedure. To investigate optimized ablation lesion line sets, in silico experimentation is an ideal solution. 3D computer models give us a unique advantage to plan and assess the effectiveness of different ablation strategies before and during RFCA. Reliability of in silico assessment is ensured by inclusion of accurate 3D atrial geometry, realistic fiber orientation, accurate fibrosis distribution and cellular kinetics; however, most of this detailed information in the current computer models is extrapolated from animal models and not from the human heart. The predictive power of computer models will increase as they are validated with human experimental and clinical data. To make the most from a computer model, one needs to develop 3D computer models based on the same functionally and structurally mapped intact human atria with high spatial resolution. The purpose of this review paper is to summarize recent developments in clinically-derived computer models and the clinical insights they provide for catheter ablation.


Subject(s)
Atrial Fibrillation/surgery , Catheter Ablation , Computer Simulation , Animals , Fibrosis , Humans , Models, Cardiovascular , Pulmonary Veins/pathology
14.
Front Physiol ; 6: 37, 2015.
Article in English | MEDLINE | ID: mdl-25729366

ABSTRACT

Heart rhythm is initialized and controlled by the Sinoatrial Node (SAN), the primary pacemaker of the heart. The SAN is a heterogeneous multi-compartment structure characterized by clusters of specialized cardiomyocytes enmeshed within strands of connective tissue or fibrosis. Intranodal fibrosis is emerging as an important modulator of structural and functional integrity of the SAN pacemaker complex. In adult human hearts, fatty tissue and fibrosis insulate the SAN from the hyperpolarizing effect of the surrounding atria while electrical communication between the SAN and right atrium is restricted to discrete SAN conduction pathways. The amount of fibrosis within the SAN is inversely correlated with heart rate, while age and heart size are positively correlated with fibrosis. Pathological upregulation of fibrosis within the SAN may lead to tachycardia-bradycardia arrhythmias and cardiac arrest, possibly due to SAN reentry and exit block, and is associated with atrial fibrillation, ventricular arrhythmias, heart failure and myocardial infarction. In this review, we will discuss current literature on the role of fibrosis in normal SAN structure and function, as well as the causes and consequences of SAN fibrosis upregulation in disease conditions.

15.
Circulation ; 130(4): 315-24, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-24838362

ABSTRACT

BACKGROUND: Although sinoatrial node (SAN) dysfunction is a hallmark of human heart failure (HF), the underlying mechanisms remain poorly understood. We aimed to examine the role of adenosine in SAN dysfunction and tachy-brady arrhythmias in chronic HF. METHODS AND RESULTS: We applied multiple approaches to characterize SAN structure, SAN function, and adenosine A1 receptor expression in control (n=17) and 4-month tachypacing-induced chronic HF (n=18) dogs. Novel intramural optical mapping of coronary-perfused right atrial preparations revealed that adenosine (10 µmol/L) markedly prolonged postpacing SAN conduction time in HF by 206 ± 99 milliseconds (versus 66 ± 21 milliseconds in controls; P=0.02). Adenosine induced SAN intranodal conduction block or microreentry in 6 of 8 dogs with HF versus 0 of 7 controls (P=0.007). Adenosine-induced SAN conduction abnormalities and automaticity depression caused postpacing atrial pauses in HF versus control dogs (17.1 ± 28.9 versus 1.5 ± 1.3 seconds; P<0.001). Furthermore, 10 µmol/L adenosine shortened atrial repolarization and led to pacing-induced atrial fibrillation in 6 of 7 HF versus 0 of 7 control dogs (P=0.002). Adenosine-induced SAN dysfunction and atrial fibrillation were abolished or prevented by adenosine A1 receptor antagonists (50 µmol/L theophylline/1 µmol/L 8-cyclopentyl-1,3-dipropylxanthine). Adenosine A1 receptor protein expression was significantly upregulated during HF in the SAN (by 47 ± 19%) and surrounding atrial myocardium (by 90 ± 40%). Interstitial fibrosis was significantly increased within the SAN in HF versus control dogs (38 ± 4% versus 23 ± 4%; P<0.001). CONCLUSIONS: In chronic HF, adenosine A1 receptor upregulation in SAN pacemaker and atrial cardiomyocytes may increase cardiac sensitivity to adenosine. This effect may exacerbate conduction abnormalities in the structurally impaired SAN, leading to SAN dysfunction, and potentiate atrial repolarization shortening, thereby facilitating atrial fibrillation. Atrial fibrillation may further depress SAN function and lead to tachy-brady arrhythmias in HF.


Subject(s)
Bradycardia/physiopathology , Heart Failure/physiopathology , Receptor, Adenosine A1/biosynthesis , Sinoatrial Node/physiopathology , Tachycardia/physiopathology , Voltage-Sensitive Dye Imaging/methods , Action Potentials/drug effects , Adenosine/administration & dosage , Adenosine/pharmacology , Adenosine/toxicity , Adenosine A1 Receptor Antagonists/pharmacology , Adenosine A1 Receptor Antagonists/therapeutic use , Animals , Atrial Fibrillation/etiology , Atrial Fibrillation/physiopathology , Bradycardia/etiology , Cardiac Pacing, Artificial/adverse effects , Dogs , Dose-Response Relationship, Drug , Fibrosis , Heart Conduction System/drug effects , Heart Conduction System/physiopathology , Heart Failure/genetics , Receptor, Adenosine A1/genetics , Receptor, Adenosine A1/physiology , Sinoatrial Node/drug effects , Sinoatrial Node/pathology , Tachycardia/etiology , Theophylline/pharmacology , Theophylline/therapeutic use , Up-Regulation , Xanthines/pharmacology , Xanthines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...