Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37050313

ABSTRACT

Cellulose nanocrystals (CNCs) were extracted from bleached cotton by sulfuric acid hydrolysis. Thin films were prepared from the aqueous suspension of CNCs by casting and evaporation with 15% glycerol as a plasticizer. Our research aimed to create stable films resistant to water. The structure and the interactions of the films were modified by short (10 min) heating at different temperatures (100, 140, and 160 °C) and by adding different amounts of citric acid (0, 10, 20, and 30%). Various analytical methods were used to determine the structure, surface properties, and mechanical properties. The interaction of composite films with water and water vapor was also investigated. Heat treatment did not significantly affect the film properties. Citric acid, without heat treatment, acted as a plasticizer. It promoted the disintegration of films in water, increased water vapor sorption, and reduced tensile strength, resulting in flexible and easy-to-handle films. The combination of heat treatment and citric acid resulted in stable liquid-water-resistant films with excellent mechanical properties. A minimum heating temperature of 120 °C and a citric acid concentration of 20% were required to obtain a stable CNC film structure resistant to liquid water.

2.
Materials (Basel) ; 15(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36363218

ABSTRACT

In this research, different clays such as laponite and montmorillonite (NaMMT) are used as fillers in the preparation of thermoplastic starch/clay nanocomposites. Thin films are produced by casting and evaporation in a wide composition range, using glycerol as the plasticizer at two different concentrations. The surface energy of clay fillers is measured by inverse gas chromatography (IGC); X-ray diffraction (XRD) and light transmission measurements (UV-VIS) are carried out to characterize the structure of nanocomposites; and mechanical properties and water vapor permeability are also studied. While all the starch/montmorillonite nanocomposites possess intercalated structures, significant exfoliation can be noted in the starch/laponite nanocomposites, mainly at low clay contents. Due to the larger surface energy of montmorillonite, stronger polymer/clay interactions and better mechanical properties can be assumed in starch/NaMMT composites. The smaller surface energy of laponite, however, can facilitate the delamination of laponite layers. Thus, the specific surface area of laponite can be further increased by exfoliation. Based on the results, the better exfoliation and the much larger specific surface area of laponite lead to higher reinforcement in starch/laponite nanocomposites.

3.
Polymers (Basel) ; 13(18)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34578087

ABSTRACT

Composite films were fabricated by using cellulose nanocrystals (CNCs) as reinforcement up to 50 wt% in thermoplastic starch (TPS). Structure and interactions were modified by using different types (glycerol and sorbitol) and different amounts (30 and 40%) of plasticizers. The structure of the composites was characterized by visible spectroscopy, Haze index measurements, and scanning electron microscopy. Tensile properties were determined by tensile testing, and the effect of CNC content on vapor permeability was investigated. Although all composite films are transparent and can hardly be distinguished by human eyes, the addition of CNCs somewhat decreases the transmittance of the films. This can be related to the increased light scattering of the films, which is caused by the aggregation of nanocrystals, leading to the formation of micron-sized particles. Nevertheless, strength is enhanced by CNCs, mostly in the composite series prepared with 30% sorbitol. Additionally, the relatively high water vapor permeability of TPS is considerably decreased by the incorporation of at least 20 wt% CNCs. Reinforcement is determined mostly by the competitive interactions among starch, nanocellulose, and plasticizer molecules. The aging of the films is caused by the additional water uptake from the atmosphere and the retrogradation of starch.

4.
Ultrason Sonochem ; 78: 105711, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34403893

ABSTRACT

The contribution of ultrasound-aided particle size reduction to the efficiency of the subsequent enzymatic hydrolysis and the accompanying morphological changes of bleached cotton and linen powders were investigated. The aqueous suspensions of cellulosic powders were pretreated either with an ultrasonic bath (US-B) or with a horn-type reactor (US-H). Results revealed that the impact of US-H was more pronounced than that of the US-B. Clearly, the linen particles were more sensitive to ultrasonication than cotton. The US-H modified the particle size distribution differently for the cotton and linen powders and reduced the mean size of particles from 49 to 40 µm and from 123 to 63 µm, respectively. A significant increase in the water retention and water sorption capacity was also measured. The smaller particles with increased accessibility were preferably digested in the enzyme treatment, resulting in a considerably higher concentration of reducing sugars and an enrichment of the residual particles with a larger average size (cotton: 47 µm; linen: 66 µm).


Subject(s)
Cellulose/chemistry , Cellulase , Hydrolysis , Particle Size , Powders , Water
5.
R Soc Open Sci ; 7(6): 200592, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32742699

ABSTRACT

Self-supported and flexible bacterial cellulose (BC) based hybrid membranes were synthesized and decorated with zinc oxide/multi-walled carbon nanotube (ZnO-MWCNT) composite additives in order to modify and tune their surface and bulk properties. Two types of ZnO-MWCNT additives with different morphologies were used in a wide concentration range from 0 to 90% for BC-based hybrids produced by filtration. The interaction between BC and ZnO-MWCNT and the effect of concentration and morphology of additives on the properties like zeta potential, hydrophilicity, electrical conductivity, etc. would be an important factor in various applications. Furthermore, the as-prepared hybrid membranes were characterized with the use of scanning electron microscopy (SEM), focused ion beam scanning electron microscopy (FIB-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and surface area measurement (BET). Applying the presented synthesis routes, the surface properties of BC-based membranes can be tailored easily. Results reveal that the as-prepared BC-ZnO-MWCNT hybrid membranes can be ideal candidates for different kinds of applications, such as water filtration or catalysts.

6.
Int J Biol Macromol ; 136: 1026-1033, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31220497

ABSTRACT

To develop functional and sustainable packaging materials from starch and to enhance their properties, agar was added to thermoplastic corn starch (TPS) in a wide concentration range and the products were prepared either by casting or melt blending with a high glycerol content. The role of agar in the mechanical and barrier performance of films, as well as the compatibility of TPS and agar was systematically evaluated. In addition, the retrogradiation of starch in various blends after long storage periods was widely characterized. Results proved that the addition of agar to TPS resulted in films with promising barrier and tensile properties. Stiffness and strength increased considerably by increasing agar content, while deformability of blends was better than those of pure TPS. Agar incorporation decreased water permeability and solubility and improved light transmittance. Retrogradation of the dry blends was significantly smaller than that of pure TPS owing to the strong starch/agar interaction.


Subject(s)
Agar/chemistry , Plastics/chemical synthesis , Starch/chemistry , Temperature , Solubility , Steam , Tensile Strength
7.
Carbohydr Polym ; 194: 51-60, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29801858

ABSTRACT

From the suspensions of cellulose nanocrystals (CNCs) derived from cotton and flax by acidic hydrolysis, transparent and smooth films were produced with different plasticizers and an amino-aldehyde based cross-linking agent in a wide composition range by a simultaneous casting and wet cross-linking process. The effect of cross-linker concentration on the optical and tensile properties and on the morphology of CNC films was investigated by various measurements. The interaction of films with liquid water and water vapour was also characterized by water sorption and water contact angle as well as performing a sinking test. Cross-linking improved the transparency, reduced the porosity and surface free energy, and prevented the delamination of CNC films in water at a concentration of 10% or higher. The surface of CNC films is basic in character and has an electron donor property. The CNC/amino-aldehyde films had a high tensile strength (45 MPa) and modulus (11 GPa).


Subject(s)
Aldehydes/chemistry , Biocompatible Materials/chemistry , Cellulose/chemistry , Cross-Linking Reagents/chemistry , Nanoparticles/chemistry , Adsorption , Water/chemistry
8.
Carbohydr Polym ; 174: 740-749, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28821127

ABSTRACT

Cellulose nanocrystals (CNCs) were released from bleached cotton and flax by a sulphuric acid hydrolysis with about 40 and 34% yield, respectively. The rod-like cotton-CNC particles were slightly longer and wider and had a less pronounced aggregation ability in aqueous suspension than the flax-CNC ones. Films were cast from the CNC suspensions with sorbitol and glycerol plasticisers. The concept behind this research was to explore how the plasticisers - with similar structure but different molecular weight - and their concentrations affect the perceptible and measured properties of CNC films. Results revealed that the type of plasticiser determined the morphology and the optical and tensile properties of films. The best quality CNC film with an averaged thickness of 50µm was obtained with 20% sorbitol from cotton-CNC. It was proved that behaviour of sorbitol and glycerol plasticisers in CNC films was very similar to that reported previously for starch films.

9.
Carbohydr Polym ; 156: 357-363, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-27842834

ABSTRACT

The efficiency of the enzymatic hydrolysis of cellulose with low frequency ultrasound (horn-type reactor) was investigated and characterized by the concentration of reducing sugars liberated. Small squares of bleached cotton fabric were used for comparing the efficiency of different agitation methods (i.e. magnetic stirring, horizontal and vertical mechanical agitation) and ultrasound. At the same enzyme dosage and substrate level, sonication at 40, 60 and 80% amplitudes (Idiss: 16.2, 32.2 and 43.4W/cm2, respectively) intensified the hydrolysis over the most efficient mechanical agitation (i.e. magnetic stirring) alone by 15%, 24% and 54%, respectively. For mapping the ultrasonicated field, fabric layers positioned perpendicularly to the ultrasonic probe at different distances were hydrolysed. The optimal operating conditions were reached at 60% amplitude and 9mm The yield depended mainly on important factors such as amplitude, the presence of a reflector, distance from horn and form of substrate.


Subject(s)
Cellulose/metabolism , Sonication , Textiles , Gossypium/chemistry , Hydrolysis
10.
Ultrason Sonochem ; 31: 473-80, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26964974

ABSTRACT

Suspension of nanocrystalline cellulose (NCC) produced from bleached cotton by controlled sulphuric acid hydrolysis was treated with low frequency ultrasound at 20 kHz and 60% amplitude for 0, 1, 2, 5 and 10 min and the effects of sonication on the properties of both the cellulose nanocrystals and their aqueous suspensions were investigated. Furthermore, a series of nanocellulose films were manufactured from the suspensions that were sonicated for different periods of time and tested. Laser diffraction analysis and transmission electron microscopy proved that sonication not only disintegrated the large NCC aggregates (Dv50 14.7 µm) to individual nanowhiskers with an average length and width of 171 ± 57 and 17 ± 4 nm, respectively, but also degraded the nanocrystals and yielded shorter and thinner particles (118 ± 45 and 13 ± 3 nm, respectively) at 10-min sonication. The ultrasound-assisted disintegration to nano-sized cellulose whiskers decreased the optical haze of suspensions from 98.4% to 52.8% with increasing time from 0 to 10 min, respectively. Sonication of the suspensions significantly contributed to the preparation of films with low haze (high transparency) and excellent tensile properties. With the increasing duration of sonication, the haze decreased and the tensile strength rose gradually. Irrespectively of sonication, however, all films had an outstanding oxygen transmission rate in a range of 5.5-6.9 cm(3)/m(2)day, and a poor thermal stability.


Subject(s)
Cellulose/chemistry , Nanoparticles , Ultrasonics , Microscopy, Electron, Transmission
11.
Ultrason Sonochem ; 22: 249-56, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25043555

ABSTRACT

Ligninolytic and hydrolytic enzymes were produced with six selected fungi on flax substrate by solid state fermentation (SSF). The extracellular enzyme production of the organisms in two SSF media was evaluated by measuring the soluble protein concentration and the filter paper, endoxylanase, 1,4-ß-d-glucosidase, 1,4-ß-d-endoglucanase, polygalacturonase, lignin peroxidase, manganese peroxidase and laccase activities of the clear culture solutions produced by conventional extraction from the SSF materials. The SSF material of the best enzyme producer (Trichoderma virens TUB F-498) was further investigated to enhance the enzyme recovery by low frequency ultrasound treatment. Performance of both the original and ultrasound macerated crude enzyme mixtures was evaluated in degradation of the colored lignin-containing and waxy materials of raw linen fabric. Results proved that sonication (at 40%, 60% and 80% amplitudes, for 60min) did not result in reduction in the filter paper, lignin peroxidase and laccase activities of the crude enzyme solution, but has a significant positive effect on the efficiency of enzyme extraction from the SSF material. Depending on the parameters of sonication, the enzyme activities in the extracts obtained can be increased up to 129-413% of the original activities measured in the control extracts recovered by a common magnetic stirrer. Sonication also has an effect on both the enzymatic removal of the lignin-containing color materials and hydrophobic surface layer from the raw linen.


Subject(s)
Chemical Fractionation/methods , Enzymes/biosynthesis , Enzymes/isolation & purification , Fermentation , Ultrasonics , Color , Enzymes/metabolism , Fungi/enzymology , Hydrolysis , Lignin/metabolism , Oxidation-Reduction , Textiles
12.
Carbohydr Polym ; 98(2): 1483-9, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24053830

ABSTRACT

A commercial acidic cellulase enzyme complex was chosen in order to gain detailed information about the effect of low-frequency ultrasound (horn at 40 kHz) on the enzyme activity. The performance of the enzyme under sonication was also evaluated in a cellulose-cellulase model reaction. The filter paper activity of the enzyme and the yield of the enzyme catalysed hydrolysis were determined as a function of the parameters of the sonicated environment (treatment time, amplitude, with and without a reflector) and compared with the data measured in a non-sonicated bath. Depending on the parameters of the sonication, the enzyme is susceptible to ultrasound and its activity can significantly decrease. Despite the serious reduction of the enzyme activity, the outcome of the enzyme catalysed hydrolysis was always positive, implying that the advantageous effects of sonication impressed on the heterogeneous enzyme reaction always overcome the undesirable enzyme modifying effect of ultrasound.


Subject(s)
Biotechnology/methods , Cellulase/chemistry , Cellulose/chemistry , Fungal Proteins/chemistry , Sonication/methods , Enzyme Assays , Hydrolysis , Trichoderma/chemistry , Trichoderma/enzymology
13.
Carbohydr Polym ; 91(2): 613-7, 2013 Jan 16.
Article in English | MEDLINE | ID: mdl-23121954

ABSTRACT

In the present work ethanol, methanol, petroleum ether and water extracts of the leaves of Ocimum sanctum were screened for their anti-microbial activity by using the agar diffusion method. The minimum inhibitory concentration of the extracts was also measured. The methanol extracts O. sanctum proved to have the maximum antimicrobial effect were loaded inside the sodium alginate chitosan nanoparticles by cation induced controlled gelification method and finished on cotton fabric by pad dry cure method. The average particle size of the nanoparticles was calculated using dynamic light scattering technique. The antimicrobial activity of the fabrics was assessed by using the standard AATCC technique (AATCC 100). The quantitative tests proved that cotton fabrics finished with the methanol extract of O. sanctum loaded nanoparticles possessed remarkable antibacterial activities with excellent wash durability. The study revealed that the herb encapsulated nanoparticle could act as a biocontrol agent against bacteria in fabrics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Ocimum/chemistry , Plant Extracts/pharmacology , Textiles , Alginates , Aspergillus niger/drug effects , Cotton Fiber , Glucuronic Acid , Hexuronic Acids , Laundering , Methanol , Microbial Sensitivity Tests , Nanoparticles , Penicillium/drug effects , Plant Leaves/chemistry , Solvents
14.
Langmuir ; 27(13): 8444-50, 2011 Jul 05.
Article in English | MEDLINE | ID: mdl-21657257

ABSTRACT

Cotton and linen fibers were ground in a ball-mill, and the effect of grinding on the microstructure and surface properties of the fibers was determined by combining a couple of simple tests with powerful techniques of surface and structure analysis. Results clearly proved that the effect of grinding on cotton fiber was much less severe than on linen. For both fibers, the degree of polymerization reduced (by 14.5% and 30.5% for cotton and linen, respectively) with a simultaneous increase in copper number. The increased water sorption capacity of the ground substrates was in good agreement with the X-ray results, which proved a less perfect crystalline structure in the ground samples. Data from XPS and SEM-EDS methods revealed that the concentration of oxygen atoms (bonded especially in acetal and/or carbonyl groups) on the ground surfaces increased significantly, resulting in an increase in oxygen/carbon atomic ratio (XPS data: from 0.11 to 0.14 and from 0.16 to 0.29 for cotton and linen, respectively). Although grinding created new surfaces rich in O atoms, the probable higher energy of the surface could not be measured by IGC, most likely due to the limited adsorption of the n-alkane probes on the less perfect crystalline surfaces.


Subject(s)
Bedding and Linens , Cellulose/chemistry , Cotton Fiber , Materials Testing , Molecular Structure , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...