Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 14(11)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36432698

ABSTRACT

The aim of this research was to investigate three thermoanalytical techniques from the glass transition temperature (Tg) determination point of view. In addition, the examination of the correlation between the measured Tg values and the stability of the amorphous solid dispersions (ASDs) was also an important part of the work. The results showed that a similar tendency of the Tg can be observed in the case of the applied methods. However, Tg values measured by thermally stimulated depolarization currents showed higher deviation from the theoretical calculations than the values measured by modulated differential scanning calorimetry, referring better to the drug-polymer interactions. Indeed, the investigations after the stress stability tests revealed that micro-thermal analysis can indicate the most sensitive changes in the Tg values, better indicating the instability of the samples. In addition to confirming that the active pharmaceutical ingredient content is a crucial factor in the stability of ASDs containing naproxen and poly(vinylpyrrolidone-co-vinyl acetate), it is worthwhile applying orthogonal techniques to better understand the behavior of ASDs. The development of stable ASDs can be facilitated via mapping the molecular mobilities with suitable thermoanalytical methods.

2.
Int J Pharm ; 613: 121413, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34954004

ABSTRACT

The present paper reports the powder filling of milled electrospun materials in vials, which contained voriconazole and sulfobutylether-ß-cyclodextrin. High-speed electrospinning was used for the production of the fibrous sample, which was divided into 6 parts. Each portion was milled using different milling methods and sizes of sieves to investigate whether the milling influences the powder and filling properties. Bulk and tapped density tests, laser diffraction and angle of repose measurements were applied to characterize the milled powders, while a vibratory feeder was used for the feeding experiments. The correlation between the material property descriptors and the feeding responses was investigated by multivariate data analysis. Based on the results, three samples were chosen for the vial filling, which was accomplished with 3400 mg electrospun material containing 200 mg voriconazole, representative of the commercial product. The feed rate was set to fit the 240 g/h production rate of the electrospinning and the relative standard deviation of three repeated vial filling was determined to see the accuracy of the process. This research shows that by applying a suitable milling method it is possible to process electrospun fibers to a powder, which can be filled into vials and used as reconstitution dosage forms.


Subject(s)
Emollients , Technology, Pharmaceutical , Powders , Proof of Concept Study , Voriconazole
3.
Eur J Pharm Sci ; 164: 105907, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34118411

ABSTRACT

Electrospinning is a technology for manufacture of nano- and micro-sized fibers, which can enhance the dissolution properties of poorly water-soluble drugs. Tableting of electrospun fibers have been demonstrated in several studies, however, continuous manufacturing of tablets have not been realized yet. This research presents the first integrated continuous processing of milled drug-loaded electrospun materials to tablet form supplemented by process analytical tools for monitoring the active pharmaceutical ingredient (API) content. Electrospun fibers of an amorphous solid dispersion (ASD) of itraconazole and poly(vinylpyrrolidone-co-vinyl acetate) were produced using high speed electrospinning and afterwards milled. The milled fibers with an average fiber diameter of 1.6 ± 0.9 µm were continuously fed with a vibratory feeder into a twin-screw blender, which was integrated with a tableting machine to prepare tablets with ~ 10 kN compression force. The blend of fibers and excipients leaving the continuous blender was characterized with a bulk density of 0.43 g/cm3 and proved to be suitable for direct tablet compression. The ASD content, and thus the API content was determined in-line before tableting and at-line after tableting using near-infrared and Raman spectroscopy. The prepared tablets fulfilled the USP <905> content uniformity requirement based on the API content of ten randomly selected tablets. This work highlights that combining the advantages of electrospinning (e.g. less solvent, fast and gentle drying, low energy consumption, and amorphous products with high specific surface area) and the continuous technologies opens a new and effective way in the field of manufacturing of the poorly water-soluble APIs.


Subject(s)
Excipients , Spectrum Analysis, Raman , Desiccation , Drug Compounding , Itraconazole , Tablets , Technology, Pharmaceutical
4.
J Pharm Biomed Anal ; 196: 113902, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33486449

ABSTRACT

In a continuous powder blending process machine vision is utilized as a Process Analytical Technology (PAT) tool. While near-infrared (NIR) and Raman spectroscopy are reliable methods in this field, measurements become challenging when concentrations below 2 w/w% are quantified. However, an active pharmaceutical ingredient (API) with an intense color might be quantified in even lower quantities by images recorded with a digital camera. Riboflavin (RI) was used as a model API with orange color, its Limit of Detection was found to be 0.015 w/w% and the Limit of Quantification was 0.046 w/w% using a calibration based on the pixel value of images. A calibration for in-line measurement of RI concentration was prepared in the range of 0.2-0.45 w/w%, validation with UV/VIS spectrometry showed great accuracy with a relative error of 2.53 %. The developed method was then utilized for a residence time distribution (RTD) measurement in order to characterize the dynamics of the blending process. Lastly, the technique was applied in real-time feedback control of a continuous powder blending process. Machine vision based direct or indirect API concentration determination is a promising and fast method with a great potential for monitoring and control of continuous pharmaceutical processes.


Subject(s)
Pharmaceutical Preparations , Spectroscopy, Near-Infrared , Calibration , Feedback , Powders , Technology , Technology, Pharmaceutical
5.
Mol Pharm ; 18(1): 317-327, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33301326

ABSTRACT

This research aimed to compare two solvent-based methods for the preparation of amorphous solid dispersions (ASDs) made up of poorly soluble spironolactone and poly(vinylpyrrolidone-co-vinyl acetate). The same apparatus was used to produce, in continuous mode, drug-loaded electrospun (ES) and spray-dried (SD) materials from dichloromethane and ethanol-containing solutions. The main differences between the two preparation methods were the concentration of the solution and application of high voltage. During electrospinning, a solution with a higher concentration and high voltage was used to form a fibrous product. In contrast, a dilute solution and no electrostatic force were applied during spray drying. Both ASD products showed an amorphous structure according to differential scanning calorimetry and X-ray powder diffraction results. However, the dissolution of the SD sample was not complete, while the ES sample exhibited close to 100% dissolution. The polarized microscopy images and Raman microscopy mapping of the samples highlighted that the SD particles contained crystalline traces, which can initiate precipitation during dissolution. Investigation of the dissolution media with a borescope made the precipitated particles visible while Raman spectroscopy measurements confirmed the appearance of the crystalline active pharmaceutical ingredient. To explain the micro-morphological differences, the shape and size of the prepared samples, the evaporation rate of residual solvents, and the influence of the electrostatic field during the preparation of ASDs had to be considered. This study demonstrated that the investigated factors have a great influence on the dissolution of the ASDs. Consequently, it is worth focusing on the selection of the appropriate ASD preparation method to avoid the deterioration of dissolution properties due to the presence of crystalline traces.


Subject(s)
Solubility/drug effects , Spironolactone/chemistry , Calorimetry, Differential Scanning/methods , Chemistry, Pharmaceutical/methods , Crystallization/methods , Desiccation/methods , Drug Compounding/methods , Polymers/chemistry , Powder Diffraction/methods , Powders/chemistry , Pyrrolidines/chemistry , Solvents/chemistry , Spray Drying , Vinyl Compounds/chemistry , X-Ray Diffraction/methods
6.
AAPS PharmSciTech ; 21(6): 214, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32737608

ABSTRACT

A model anaerobic bacterium strain from the gut microbiome (Clostridium butyricum) producing anti-inflammatory molecules was incorporated into polymer-free fibers of a water-soluble cyclodextrin matrix (HP-ß-CD) using a promising scaled-up nanotechnology, high-speed electrospinning. A long-term stability study was also carried out on the bacteria in the fibers. Effect of storage conditions (temperature, presence of oxygen) and growth conditions on the bacterial viability in the fibers was investigated. The viability of the sporulated anaerobic bacteria in the fibers was maintained during 12 months of room temperature storage in the presence of oxygen. Direct compression was used to prepare tablets from the produced bacteria-containing fibers after milling (using an oscillating mill) and mixing with tableting excipients, making easy oral administration of the bacteria possible. No significant decrease was observed in bacterial viability following the processing of the fibers (milling and tableting).


Subject(s)
Bacteria, Anaerobic/isolation & purification , Clostridium butyricum/isolation & purification , Drug Compounding , Gastrointestinal Microbiome , Anaerobiosis , Bacteria, Anaerobic/genetics , Clostridium butyricum/genetics , Excipients , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Tablets , Temperature
7.
Molecules ; 25(14)2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32708227

ABSTRACT

A simple and efficient microwave (MW)-assisted method was elaborated for the catalyst-free synthesis of isoindolin-1-one-3-phosphonates by the three-component condensation of 2-formylbenzoic acid, aliphatic primary amines and various dialkyl phosphites. The batch and the continuous flow reactions were optimized in respect of the temperature, the reaction time and the molar ratio of the starting materials. To evaluate the potential of MW irradiation, comparative thermal experiments were also carried out. In order to obtain "real time" information about the condensation, the special Kabachnik-Fields reaction of 2-formylbenzoic acid, butylamine and diethyl phosphite was monitored by in situ FT-IR spectroscopy. The novel title compounds could be prepared in high yields at low temperature under a short reaction time. A suitable method could also be developed for the preparation of the isoindolin-1-one-3-phosphonates at a "few g" scale by using a continuous flow MW reactor.


Subject(s)
Organophosphonates/chemical synthesis , Amines/chemistry , Benzoic Acid/chemistry , Catalysis , Kinetics , Microwaves , Phosphites/chemistry , Solvents/chemistry , Temperature
8.
Eur J Pharm Sci ; 141: 105089, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31626967

ABSTRACT

The goals of this work were to evaluate if high-speed electrospinning can be used as a gentle and continuous drying technology to produce protein-containing cyclodextrin-based fibers from an aqueous solution and to convert the produced protein-cyclodextrin fibers into a directly compressible powder. A 400 mL/h feeding rate was used during the electrospinning experiments, corresponding to a ~270 g/h production rate of the dried material. The produced fibers were collected in a cyclone. The fibers were found grindable without secondary drying, and the ground powder was mixed with tableting excipients and was successfully tableted by direct compression. The model protein-type drug (ß-galactosidase) remained stable during each of the processing steps (electrospinning, grinding, tableting) and after 6 months of storage at room temperature in the tablets. The obtained results demonstrate that high speed electrospinning can be a gentle alternative to traditional drying methods used for protein-type drugs, and that tablet formulation is achievable from the electrospun material prepared this way.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/chemistry , Technology, Pharmaceutical/methods , beta-Galactosidase/chemistry , Desiccation , Enzyme Stability , Powders , Tablets
9.
Pharmaceutics ; 11(12)2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31817454

ABSTRACT

Preparation and formulation of amorphous solid dispersions (ASDs) are becoming more and more popular in the pharmaceutical field because the dissolution of poorly water-soluble drugs can be effectively improved this way, which can lead to increased bioavailability in many cases. During downstream processing of ASDs, technologists need to keep in mind both traditional challenges and the newest trends. In the last decade, the pharmaceutical industry began to display considerable interest in continuous processing, which can be explained with their potential advantages such as smaller footprint, easier scale-up, and more consistent product, better quality and quality assurance. Continuous downstream processing of drug-loaded ASDs opens new ways for automatic operation. Therefore, the formulation of poorly water-soluble drugs may be more effective and safe. However, developments can be challenging due to the poor flowability and feeding properties of ASDs. Consequently, this review pays special attention to these characteristics since the feeding of the components greatly influences the content uniformity in the final dosage form. The main purpose of this paper is to summarize the most important steps of the possible ASD-based continuous downstream processes in order to give a clear overview of current course lines and future perspectives.

10.
Pharmaceutics ; 11(8)2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31405029

ABSTRACT

The pharmaceutical industry has never seen such a vast development in process analytical methods as in the last decade. The application of near-infrared (NIR) and Raman spectroscopy in monitoring production lines has also become widespread. This work aims to utilize the large amount of information collected by these methods by building an artificial neural network (ANN) model that can predict the dissolution profile of the scanned tablets. An extended release formulation containing drotaverine (DR) as a model drug was developed and tablets were produced with 37 different settings, with the variables being the DR content, the hydroxypropyl methylcellulose (HPMC) content and compression force. NIR and Raman spectra of the tablets were recorded in both the transmission and reflection method. The spectra were used to build a partial least squares prediction model for the DR and HPMC content. The ANN model used these predicted values, along with the measured compression force, as input data. It was found that models based on both NIR and Raman spectra were capable of predicting the dissolution profile of the test tablets within the acceptance limit of the f2 difference factor. The performance of these ANN models was compared to PLS models using the same data as input, and the prediction of the ANN models was found to be more accurate. The proposed method accomplishes the prediction of the dissolution profile of extended release tablets using either NIR or Raman spectra.

11.
Pharmaceutics ; 11(7)2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31336743

ABSTRACT

The aims of this work were to develop a processable, electrospun formulation of a model biopharmaceutical drug, ß-galactosidase, and to demonstrate that higher production rates of biopharmaceutical-containing fibers can be achieved by using high-speed electrospinning compared to traditional electrospinning techniques. An aqueous solution of 7.6 w/w% polyvinyl alcohol, 0.6 w/w% polyethylene oxide, 9.9 w/w% mannitol, and 5.4 w/w% ß-galactosidase was successfully electrospun with a 30 mL/h feeding rate, which is about 30 times higher than the feeding rate usually attained with single-needle electrospinning. According to X-ray diffraction measurements, polyvinyl alcohol, polyethylene oxide, and ß-galactosidase were in an amorphous state in the fibers, whereas mannitol was crystalline (δ-polymorph). The presence of crystalline mannitol and the low water content enabled appropriate grinding of the fibrous sample without secondary drying. The ground powder was mixed with excipients commonly used during the preparation of pharmaceutical tablets and was successfully compressed into tablets. ß-galactosidase remained stable during each of the processing steps (electrospinning, grinding, and tableting) and after one year of storage at room temperature in the tablets. The obtained results demonstrate that high-speed electrospinning is a viable alternative to traditional biopharmaceutical drying methods, especially for heat sensitive molecules, and tablet formulation is achievable from the electrospun material prepared this way.

12.
Biotechnol Prog ; 35(5): e2848, 2019 09.
Article in English | MEDLINE | ID: mdl-31115976

ABSTRACT

Raman spectroscopy as a process analytical technology tool was implemented for the monitoring and control of ethanol fermentation carried out with Saccharomyces cerevisiae. The need for the optimization of bioprocesses such as ethanol production, to increase product yield, enhanced the development of control strategies. The control system developed by the authors utilized noninvasive Raman measurements to avoid possible sterilization problems. Real-time data analysis was applied using partial least squares regression (PLS) method. With the aid of spectral pretreatment and multivariate data analysis, the monitoring of glucose and ethanol concentration was successful during yeast fermentation with the prediction error of 4.42 g/L for glucose and 2.40 g/L for ethanol. By Raman spectroscopy-based feedback control, the glucose concentration was maintained at 100 g/L by the automatic feeding of concentrated glucose solution. The control of glucose concentration during fed-batch fermentation resulted in increased ethanol production. Ethanol yield of 86% was achieved compared to the batch fermentation when 75% yield was obtained. The results show that the use of Raman spectroscopy for the monitoring and control of yeast fermentation is a promising way to enhance process understanding and achieve consistently high production yield.


Subject(s)
Ethanol , Fermentation/physiology , Glucose , Spectrum Analysis, Raman/methods , Bioreactors , Culture Media/chemistry , Culture Media/metabolism , Equipment Design , Ethanol/analysis , Ethanol/metabolism , Glucose/analysis , Glucose/metabolism , Saccharomyces cerevisiae , Spectrum Analysis, Raman/instrumentation
13.
J Control Release ; 298: 120-127, 2019 03 28.
Article in English | MEDLINE | ID: mdl-30779951

ABSTRACT

The aims of this study were to evaluate electrospinning as a continuous alternative to freeze drying in the production of a reconstitution injection dosage form, and to prove that aqueous electrospinning can be realized with a high production rate at room temperature. High-speed electrospinning with a novel continuous cyclone collection was used to manufacture a formulation of the poorly water-soluble antifungal voriconazole (VOR) with sulfobutylether-ß-cyclodextrin (SBE-ß-CD). The freeze-dried, marketed product of this drug substance, Vfend® also contains SBE-ß-CD as excipient. SBE-ß-CD acted as a 'quasi-polymer', and it could be electrospun despite its low molecular mass (2163 Da). According to X-ray diffraction and differential scanning calorimetry, no traces of crystalline VOR were detectable in the fibers. Furthermore, Raman mapping and energy dispersive spectroscopy measurements showed a uniform distribution of amorphous VOR in the fibers. Reconstitution tests carried out with ground fibrous powder showed complete dissolution resulting in a clear solution after 30 s (similarly to Vfend®). The high productivity rate (~240 g/h) achieved using high-speed electrospinning makes this scaled-up, continuous and flexible manufacturing process capable of fulfilling the technological and capacity requirements of the pharmaceutical industry. This work shows that aqueous high-speed electrospinning, being a continuous and high-throughput process, is an economically viable production alternative to freeze drying.


Subject(s)
Antifungal Agents/administration & dosage , Technology, Pharmaceutical/methods , Voriconazole/administration & dosage , beta-Cyclodextrins/chemistry , Antifungal Agents/chemistry , Chemistry, Pharmaceutical/methods , Crystallization , Excipients/chemistry , Freeze Drying , Powders , Solubility , Temperature , Voriconazole/chemistry
14.
J Control Release ; 296: 162-178, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30677436

ABSTRACT

In chronic intestinal diseases like inflammatory bowel disease, parenteral administration of biopharmaceuticals is associated with numerous disadvantages including immune reactions, infections, low patient compliance, and toxicity caused by high systemic bioavailability. One alternative that can potentially overcome these limitations is oral administration of biopharmaceuticals, where the local delivery will reduce the systemic exposure and furthermore the manufacturing costs will be lower. However, the development of oral dosage forms that deliver the biologically active form to the intestines is one of the greatest challenges for pharmaceutical technologists due to the sensitive nature of biopharmaceuticals. The present article discusses the various drug delivery technologies used to produce orally administered solid dosage forms of biopharmaceuticals with an emphasis on colon-targeted delivery. Solid oral dosage compositions containing different types of colon-targeting biopharmaceuticals are compiled followed by a review of currently applied and emerging drying technologies for biopharmaceuticals. The different drying technologies are compared in terms of their advantages, limitations, costs and their effect on product stability.


Subject(s)
Biological Products/chemistry , Desiccation , Drug Delivery Systems , Technology, Pharmaceutical/methods , Administration, Oral , Animals , Biological Products/administration & dosage , Colon , Humans
15.
Int J Pharm ; 547(1-2): 360-367, 2018 Aug 25.
Article in English | MEDLINE | ID: mdl-29879507

ABSTRACT

The present paper reports the first dynamic image analysis-based feedback control of continuous twin-screw wet granulation process. Granulation of the blend of lactose and starch was selected as a model process. The size and size distribution of the obtained particles were successfully monitored by a process camera coupled with an image analysis software developed by the authors. The validation of the developed system showed that the particle size analysis tool can determine the size of the granules with an error of less than 5 µm. The next step was to implement real-time feedback control of the process by controlling the liquid feeding rate of the pump through a PC, based on the real-time determined particle size results. After the establishment of the feedback control, the system could correct different real-life disturbances, creating a Process Analytically Controlled Technology (PACT), which guarantees the real-time monitoring and controlling of the quality of the granules. In the event of changes or bad tendencies in the particle size, the system can automatically compensate the effect of disturbances, ensuring proper product quality. This kind of quality assurance approach is especially important in the case of continuous pharmaceutical technologies.


Subject(s)
Chemistry, Pharmaceutical/methods , Excipients/chemistry , Quality Control , Technology, Pharmaceutical/methods , Lactose/chemistry , Particle Size , Starch/chemistry
16.
Beilstein J Org Chem ; 13: 76-86, 2017.
Article in English | MEDLINE | ID: mdl-28179951

ABSTRACT

A family of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides was synthesized by the microwave-assisted solvent-free addition of dialkyl phosphites and diphenylphosphine oxide, respectively, to imines formed from benzaldehyde derivatives and primary amines. After optimization, the reactivity was mapped, and the fine mechanism was evaluated by DFT calculations. Two α-aminophosphonates were subjected to an X-ray study revealing a racemic dimer formation made through a N-H···O=P intermolecular hydrogen bridges pair.

17.
Acta Pharm Hung ; 81(3): 109-24, 2011.
Article in Hungarian | MEDLINE | ID: mdl-22165414

ABSTRACT

Crystallization processes can be evaluated from both kinetic and thermodinamic point of view with real-time analitical methods, effects of production parameters on the final quality can be estimated as well. Consequently there is an increasing emphasis on analytical devices being applicable for real-time detection. Among these techniques Raman spectrometry is advantageously utilizable for real-time monitoring of crystallizations. Impurities can dramatically change the nucleation and crystal growth, thus they can alter the physical and chemical properties of the final product. The use of different additives (polymers;surface active ingredients) in the crystallization step in order to modify the product morphology methodically is a new direction in the scientific literature. This study provides an overview of crystallization processes in the presence of additives as well as a summary concerning the monitoring of the drug crystallizations by real-time Raman spectrometry. Furthermore the effect of polyvinyl-pyrrolidone was examined in the course of cooling crystallization of Donepezil HCl, while the process was monitored by in-line Raman spectrometry.


Subject(s)
Crystallization , Pharmaceutic Aids , Spectrum Analysis, Raman , Pharmaceutical Preparations/chemistry , Polymers , Povidone , Surface-Active Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...