Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Plant Sci ; 333: 111748, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37230189

ABSTRACT

In the last decades, linkage mapping has help in the location of metabolite quantitative trait loci (QTL) in many species; however, this approach shows some limitations. Recently, thanks to the most recent advanced in high-throughput genotyping technologies like next-generation sequencing, metabolite genome-wide association study (mGWAS) has been proposed a powerful tool to identify the genetic variants in polygenic agrinomic traits. Fruit flavor is a complex interaction of aroma volatiles and taste being sugar and acid ratio key parameter for flavor acceptance. Here, we review recent progress of mGWAS in pinpoint gene polymorphisms related to flavor-related metabolites in fruits. Despite clear successes in discovering novel genes or regions associated with metabolite accumulation affecting sensory attributes in fruits, GWAS incurs in several limitations summarized in this review. In addition, in our own work, we performed mGWAS on 194 Citrus grandis accessions to investigate the genetic control of individual primary and lipid metabolites in ripe fruit. We have identified a total of 667 associations for 14 primary metabolites including amino acids, sugars, and organic acids, and 768 associations corresponding to 47 lipids. Furthermore, candidate genes related to important metabolites related to fruit quality such as sugars, organic acids and lipids were discovered.


Subject(s)
Fruit , Genome-Wide Association Study , Fruit/metabolism , Chromosome Mapping , Sugars/metabolism , Lipids/analysis
2.
Metabolites ; 10(6)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481759

ABSTRACT

Grapes, one of the oldest agricultural crops, are cultivated to produce table fruits, dried fruits, juice, and wine. Grapevine variety is composed of clones that share common morphological traits. However, they can differ in minor genetic mutations which often result in not only notorious morphological changes but also in other non-visible sensorial distinctive attributes. In the present work, we identified three Vitis vinifera cv. Pinot noir clones grown under identical field conditions that showed different grape cluster types. Here, sensorial analysis together with non-targeted metabolite profiles by Ultra High performance Liquid Chromatography (UPLC) couples to Ultra High Resolution Mass Spectrometry (FT-ICR-MS) of wines elaborated from the three different grape cluster types was studied with the aim of (i) finding sensorial differences among these three types of wines, and, if there were, (ii) determining the molecular features (metabolites) associated with these sensorial attributes by a multivariate statistical approach.

3.
Plant Cell Environ ; 43(6): 1376-1393, 2020 06.
Article in English | MEDLINE | ID: mdl-32012308

ABSTRACT

The species Deschampsia antarctica (DA) is one of the only two native vascular species that live in Antarctica. We performed ecophysiological, biochemical, and metabolomic studies to investigate the responses of DA to low temperature. In parallel, we assessed the responses in a non-Antarctic reference species (Triticum aestivum [TA]) from the same family (Poaceae). At low temperature (4°C), both species showed lower photosynthetic rates (reductions were 70% and 80% for DA and TA, respectively) and symptoms of oxidative stress but opposite responses of antioxidant enzymes (peroxidases and catalase). We employed fused least absolute shrinkage and selection operator statistical modelling to associate the species-dependent physiological and antioxidant responses to primary metabolism. Model results for DA indicated associations with osmoprotection, cell wall remodelling, membrane stabilization, and antioxidant secondary metabolism (synthesis of flavonols and phenylpropanoids), coordinated with nutrient mobilization from source to sink tissues (confirmed by elemental analysis), which were not observed in TA. The metabolic behaviour of DA, with significant changes in particular metabolites, was compared with a newly compiled multispecies dataset showing a general accumulation of metabolites in response to low temperatures. Altogether, the responses displayed by DA suggest a compromise between catabolism and maintenance of leaf functionality.


Subject(s)
Adaptation, Physiological , Cold Temperature , Nitrogen/metabolism , Phosphorus/metabolism , Poaceae/metabolism , Antarctic Regions , Antioxidants/metabolism , Ascorbate Peroxidases/metabolism , Carbon/metabolism , Catalase/metabolism , Cell Respiration , Cell Wall/metabolism , Glutathione/metabolism , Metabolomics , Oxidation-Reduction , Photosynthesis , Solubility , Species Specificity , Sulfur/metabolism
4.
New Phytol ; 225(2): 754-768, 2020 01.
Article in English | MEDLINE | ID: mdl-31489634

ABSTRACT

Understanding the strategies employed by plant species that live in extreme environments offers the possibility to discover stress tolerance mechanisms. We studied the physiological, antioxidant and metabolic responses to three temperature conditions (4, 15, and 23°C) of Colobanthus quitensis (CQ), one of the only two native vascular species in Antarctica. We also employed Dianthus chinensis (DC), to assess the effects of the treatments in a non-Antarctic species from the same family. Using fused LASSO modelling, we associated physiological and biochemical antioxidant responses with primary metabolism. This approach allowed us to highlight the metabolic pathways driving the response specific to CQ. Low temperature imposed dramatic reductions in photosynthesis (up to 88%) but not in respiration (sustaining rates of 3.0-4.2 µmol CO2  m-2  s-1 ) in CQ, and no change in the physiological stress parameters was found. Its notable antioxidant capacity and mitochondrial cytochrome respiratory activity (20 and two times higher than DC, respectively), which ensure ATP production even at low temperature, was significantly associated with sulphur-containing metabolites and polyamines. Our findings potentially open new biotechnological opportunities regarding the role of antioxidant compounds and respiratory mechanisms associated with sulphur metabolism in stress tolerance strategies to low temperature.


Subject(s)
Caryophyllaceae/physiology , Cold Temperature , Cytochromes/metabolism , Stress, Physiological , Sulfur/metabolism , Antarctic Regions , Antioxidants/metabolism , Carbon/metabolism , Cell Respiration , Geography , Glutathione/metabolism , Models, Biological , Oxidation-Reduction , Photosynthesis , Plant Proteins/metabolism , Solubility , Species Specificity
5.
Mol Metab ; 24: 1-17, 2019 06.
Article in English | MEDLINE | ID: mdl-31003944

ABSTRACT

OBJECTIVE: Aging is accompanied by loss of brown adipocytes and a decline in their thermogenic potential, which may exacerbate the development of adiposity and other metabolic disorders. Presently, only limited evidence exists describing the molecular alterations leading to impaired brown adipogenesis with aging and the contribution of these processes to changes of systemic energy metabolism. METHODS: Samples of young and aged murine brown and white adipose tissue were used to compare age-related changes of brown adipogenic gene expression and thermogenesis-related lipid mobilization. To identify potential markers of brown adipose tissue aging, non-targeted proteomic and metabolomic as well as targeted lipid analyses were conducted on young and aged tissue samples. Subsequently, the effects of several candidate lipid classes on brown adipocyte function were examined. RESULTS: Corroborating previous reports of reduced expression of uncoupling protein-1, we observe impaired signaling required for lipid mobilization in aged brown fat after adrenergic stimulation. Omics analyses additionally confirm the age-related impairment of lipid homeostasis and reveal the accumulation of specific lipid classes, including certain sphingolipids, ceramides, and dolichols in aged brown fat. While ceramides as well as enzymes of dolichol metabolism inhibit brown adipogenesis, inhibition of sphingosine 1-phosphate receptor 2 induces brown adipocyte differentiation. CONCLUSIONS: Our functional analyses show that changes in specific lipid species, as observed during aging, may contribute to reduced thermogenic potential. They thus uncover potential biomarkers of aging as well as molecular mechanisms that could contribute to the degradation of brown adipocytes, thereby providing potential treatment strategies of age-related metabolic conditions.


Subject(s)
Adipocytes, Brown/metabolism , Aging/metabolism , Lipid Metabolism , Adipocytes, Brown/cytology , Animals , Biomarkers/metabolism , Cells, Cultured , Ceramides/metabolism , Dolichols/metabolism , Male , Metabolome , Mice , Mice, Inbred C57BL , Proteome/genetics , Proteome/metabolism , Sphingolipids/metabolism
6.
Mol Plant ; 11(1): 118-134, 2018 01 08.
Article in English | MEDLINE | ID: mdl-28866081

ABSTRACT

Metabolic genome-wide association studies (mGWAS), whereupon metabolite levels are regarded as traits, can help unravel the genetic basis of metabolic networks. A total of 309 Arabidopsis accessions were grown under two independent environmental conditions (control and stress) and subjected to untargeted LC-MS-based metabolomic profiling; levels of the obtained hydrophilic metabolites were used in GWAS. Our two-condition-based GWAS for more than 3000 semi-polar metabolites resulted in the detection of 123 highly resolved metabolite quantitative trait loci (p ≤ 1.0E-08), 24.39% of which were environment-specific. Interestingly, differently from natural variation in Arabidopsis primary metabolites, which tends to be controlled by a large number of small-effect loci, we found several major large-effect loci alongside a vast number of small-effect loci controlling variation of secondary metabolites. The two-condition-based GWAS was followed by integration with network-derived metabolite-transcript correlations using a time-course stress experiment. Through this integrative approach, we selected 70 key candidate associations between structural genes and metabolites, and experimentally validated eight novel associations, two of them showing differential genetic regulation in the two environments studied. We demonstrate the power of combining large-scale untargeted metabolomics-based GWAS with time-course-derived networks both performed under different abiotic environments for identifying metabolite-gene associations, providing novel global insights into the metabolic landscape of Arabidopsis.


Subject(s)
Arabidopsis/metabolism , Metabolomics/methods , Chromatography, Liquid , Genome-Wide Association Study , Mass Spectrometry , Quantitative Trait Loci/genetics
7.
Plant J ; 90(2): 319-329, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28122143

ABSTRACT

Heterosis has been extensively exploited for yield gain in maize (Zea mays L.). Here we conducted a comparative metabolomics-based analysis of young roots from in vitro germinating seedlings and from leaves of field-grown plants in a panel of inbred lines from the Dent and Flint heterotic patterns as well as selected F1 hybrids. We found that metabolite levels in hybrids were more robust than in inbred lines. Using state-of-the-art modeling techniques, the most robust metabolites from roots and leaves explained up to 37 and 44% of the variance in the biomass from plants grown in two distinct field trials. In addition, a correlation-based analysis highlighted the trade-off between defense-related metabolites and hybrid performance. Therefore, our findings demonstrated the potential of metabolic profiles from young maize roots grown under tightly controlled conditions to predict hybrid performance in multiple field trials, thus bridging the greenhouse-field gap.


Subject(s)
Plant Roots/metabolism , Plant Roots/physiology , Zea mays/metabolism , Zea mays/physiology , Biomass , Hybridization, Genetic/genetics , Hybridization, Genetic/physiology , Metabolomics/methods , Plant Leaves/metabolism , Plant Leaves/physiology , Seedlings/metabolism , Seedlings/physiology
8.
PLoS Genet ; 12(10): e1006363, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27760136

ABSTRACT

Plant primary metabolism is a highly coordinated, central, and complex network of biochemical processes regulated at both the genetic and post-translational levels. The genetic basis of this network can be explored by analyzing the metabolic composition of genetically diverse genotypes in a given plant species. Here, we report an integrative strategy combining quantitative genetic mapping and metabolite‒transcript correlation networks to identify functional associations between genes and primary metabolites in Arabidopsis thaliana. Genome-wide association study (GWAS) was used to identify metabolic quantitative trait loci (mQTL). Correlation networks built using metabolite and transcript data derived from a previously published time-course stress study yielded metabolite‒transcript correlations identified by covariation. Finally, results obtained in this study were compared with mQTL previously described. We applied a statistical framework to test and compare the performance of different single methods (network approach and quantitative genetics methods, representing the two orthogonal approaches combined in our strategy) with that of the combined strategy. We show that the combined strategy has improved performance manifested by increased sensitivity and accuracy. This combined strategy allowed the identification of 92 candidate associations between structural genes and primary metabolites, which not only included previously well-characterized gene‒metabolite associations, but also revealed novel associations. Using loss-of-function mutants, we validated two of the novel associations with genes involved in tyrosine degradation and in ß-alanine metabolism. In conclusion, we demonstrate that applying our integrative strategy to the largely untapped resource of metabolite-transcript associations can facilitate the discovery of novel metabolite-related genes. This integrative strategy is not limited to A. thaliana, but generally applicable to other plant species.


Subject(s)
Arabidopsis Proteins , Arabidopsis/genetics , Genome-Wide Association Study , Quantitative Trait Loci/genetics , Alanine/genetics , Alanine/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromosome Mapping , Gene Expression Regulation, Plant , Genetic Variation , Genome, Plant , Genotype , Statistics as Topic , Tyrosine/genetics , Tyrosine/metabolism
9.
Metabolomics ; 12: 39, 2016.
Article in English | MEDLINE | ID: mdl-26848290

ABSTRACT

Information about the total chemical composition of primary metabolites during grape berry development is scarce, as are comparative studies trying to understand to what extent metabolite modifications differ between cultivars during ripening. Thus, correlating the metabolic profiles with the changes occurring in berry development and ripening processes is essential to progress in their comprehension as well in the development of new approaches to improve fruit attributes. Here, the developmental metabolic profiling analysis across six stages from flowering to fully mature berries of two cultivars, Cabernet Sauvignon and Merlot, is reported at metabolite level. Based on a gas chromatography-mass spectrometry untargeted approach, 115 metabolites were identified and relative quantified in both cultivars. Sugars and amino acids levels show an opposite behaviour in both cultivars undergoing a highly coordinated shift of metabolite associated to primary metabolism during the stages involved in growth, development and ripening of berries. The changes are characteristic for each stage, the most pronounced ones occuring at fruit setting and pre-Veraison. They are associated to a reduction of the levels of metabolites present in the earlier corresponding stage, revealing a required catabolic activity of primary metabolites for grape berry developmental process. Network analysis revealed that the network connectivity of primary metabolites is stage- and cultivar-dependent, suggesting differences in metabolism regulation between both cultivars as the maturity process progresses. Furthermore, network analysis may represent an appropriate method to display the association between primary metabolites during berry developmental processes among different grapevine cultivars and for identifying potential biologically relevant metabolites.

10.
J Exp Bot ; 66(7): 1907-18, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25680792

ABSTRACT

Lipid remodeling is one of the most dramatic metabolic responses to phosphorus (P) starvation. It consists of the degradation of phospholipids to release the phosphate needed by the cell and the accumulation of glycolipids to replace phospholipids in the membranes. It is shown that PHR1, a well-described transcriptional regulator of P starvation of the MYB family, largely controls this response. Glycerolipid composition and the expression of most lipid-remodeling gene transcripts analysed were altered in the phr1 mutant under phosphate starvation in comparison to wild-type plants. In addition to these results, the lipidomic characterization of wild-type plants showed two novel features of the lipid response to P starvation for Arabidopsis. Triacylglycerol (TAG) accumulates dramatically under P starvation (by as much as ~20-fold in shoots and ~13-fold in roots), a response known to occur in green algae but hardly known in plants. Surprisingly, there was an increase in phosphatidylglycerol (PG) in P-starved roots, a response that may be adaptive as it was suppressed in the phr1 mutant.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Phosphorus/metabolism , Transcription Factors/metabolism , Triglycerides/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Lipid Metabolism , Mutation , Phosphates/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/metabolism , Plants, Genetically Modified , Seedlings , Signal Transduction , Transcription Factors/genetics
11.
Plant Cell ; 26(3): 915-28, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24642935

ABSTRACT

Glycerolipid metabolism of plants responds dynamically to changes in light intensity and temperature, leading to the modification of membrane lipid composition to ensure optimal biochemical and physical properties in the new environment. Although multiple posttranscriptional regulatory mechanisms have been reported to be involved in the process, the contribution of transcriptional regulation remains largely unknown. Here, we present an integrative analysis of transcriptomic and lipidomic data, revealing large-scale coordination between gene expression and changes in glycerolipid levels during the Arabidopsis thaliana response to light and temperature stimuli. Using a multivariate regression technique called O2PLS, we show that the gene expression response is strictly coordinated at the biochemical pathway level and occurs in parallel with changes of specific glycerolipid pools. Five interesting candidate genes were chosen for further analysis from a larger set of candidates identified based on their close association with various groups of glycerolipids. Lipidomic analysis of knockout mutant lines of these five genes showed a significant relationship between the coordination of transcripts and glycerolipid levels in a changing environment and the effects of single gene perturbations.


Subject(s)
Arabidopsis/metabolism , Gene Expression , Genes, Plant , Membrane Lipids/metabolism , Arabidopsis/genetics , Transcriptome
12.
PLoS Pathog ; 9(3): e1003221, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23516362

ABSTRACT

Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Carbon-Carbon Lyases/genetics , Plant Diseases/immunology , Transcription Factors/genetics , Trichoderma/physiology , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/metabolism , Carbon-Carbon Lyases/metabolism , Cucumis sativus/genetics , Cucumis sativus/immunology , Cucumis sativus/microbiology , Cucumis sativus/physiology , Ethylenes/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Knockout Techniques , Mutation , Oligonucleotide Array Sequence Analysis , Oxidative Stress/physiology , Plant Diseases/microbiology , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/microbiology , Plant Roots/physiology , Plants, Genetically Modified , Salt Tolerance , Sodium Chloride/pharmacology , Stress, Physiological , Transcription Factors/metabolism , Trichoderma/genetics
14.
Nat Prod Commun ; 7(5): 603-6, 2012 May.
Article in English | MEDLINE | ID: mdl-22799086

ABSTRACT

Two depsides and five depsidones, isolated from lichens, were tested to determine their in vivo protective effects on tobacco leaves challenged with tobacco mosaic virus (TMV). The results indicate that most of these compounds are able to reduce either the number and/or the size of necrotic lesions following virus infection. Pannarin, 1'-chloro-pannarin and stictic acid provided the more effective protective results, reducing by at least 45% the number and size of lesions. Real Time PCR assays were used to explore the target of action against TMV by examining the response behavior of genes involved in the plant defense mechanism. The application of the lichen substances did not lead to changes in the transcriptional levels of pathogen-related (PR1a), allene oxide synthase 2 (AOS2) or oxophytodienoate reductase (OPR3) genes. Thus, the protection observed in the tobacco leaves treated with the lichen compounds may be mediated by a mechanism which does not involved the SA- or JA-mediated defensive plant response. A possible structure-activity relationship is presented.


Subject(s)
Depsides/pharmacology , Lactones/pharmacology , Lichens/chemistry , Nicotiana/microbiology , Plant Diseases/therapy , Tobacco Mosaic Virus/drug effects , Plant Leaves/microbiology , Structure-Activity Relationship
15.
Electron. j. biotechnol ; 15(4): 7-7, July 2012. ilus, tab
Article in English | LILACS | ID: lil-646957

ABSTRACT

A callus induction and plant regeneration protocol was developed from leaf and thorn explants for the plant Ulex europaeus. Explants were incubated on 2 percent sucrose half-strength Murashige and Skoog Medium (MS) with various combinations of plant growth regulators and antioxidants. The best frequency of callus and shoot formation was obtained with 2,4-dichlorophenoxyacetic acid (2,4-D) 1 mg/l x kinetin (Kin) 0.2 mg/l (DK Medium; callus induction) and zeatin (Z) 1 mg/l (DK medium; shoot induction). Both media were supplemented with ascorbic acid 200 mg/l to prevent browning and death of the explants. The regenerated shoots transferred to rooting medium (half-strength MS Medium, 2 percent sucrose) showed rapid growth and development of roots (100 percent). Rooted plantlets were successfully transferred to soil in pots containing a 3:1 mixture of soil and vermiculite.


Subject(s)
Regeneration , Ulex/growth & development , Acclimatization , Plant Shoots/growth & development , Fabaceae/growth & development , Germination
16.
Plant J ; 67(5): 869-84, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21575090

ABSTRACT

The time-resolved response of Arabidopsis thaliana towards changing light and/or temperature at the transcriptome and metabolome level is presented. Plants grown at 21°C with a light intensity of 150 µE m⁻² sec⁻¹ were either kept at this condition or transferred into seven different environments (4°C, darkness; 21°C, darkness; 32°C, darkness; 4°C, 85 µE m⁻² sec⁻¹; 21 °C, 75 µE m⁻² sec⁻¹; 21°C, 300 µE m⁻² sec⁻¹ ; 32°C, 150 µE m⁻² sec⁻¹). Samples were taken before (0 min) and at 22 time points after transfer resulting in (8×) 22 time points covering both a linear and a logarithmic time series totaling 177 states. Hierarchical cluster analysis shows that individual conditions (defined by temperature and light) diverge into distinct trajectories at condition-dependent times and that the metabolome follows different kinetics from the transcriptome. The metabolic responses are initially relatively faster when compared with the transcriptional responses. Gene Ontology over-representation analysis identifies a common response for all changed conditions at the transcriptome level during the early response phase (5-60 min). Metabolic networks reconstructed via metabolite-metabolite correlations reveal extensive environment-specific rewiring. Detailed analysis identifies conditional connections between amino acids and intermediates of the tricarboxylic acid cycle. Parallel analysis of transcriptional changes strongly support a model where in the absence of photosynthesis at normal/high temperatures protein degradation occurs rapidly and subsequent amino acid catabolism serves as the main cellular energy supply. These results thus demonstrate the engagement of the electron transfer flavoprotein system under short-term environmental perturbations.


Subject(s)
Arabidopsis/physiology , Flavoproteins/metabolism , Gene Expression Regulation, Plant/physiology , Metabolome/physiology , Transcriptome/physiology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/radiation effects , Cluster Analysis , Darkness , Flavoproteins/radiation effects , Gene Expression Profiling , Gene Expression Regulation, Plant/radiation effects , Kinetics , Light , Metabolic Networks and Pathways/physiology , Metabolic Networks and Pathways/radiation effects , Metabolome/radiation effects , Metabolomics , Oligonucleotide Array Sequence Analysis , Photosynthesis/physiology , Photosynthesis/radiation effects , Proteolysis/radiation effects , Temperature , Time Factors , Transcriptome/radiation effects
17.
Mol Syst Biol ; 6: 364, 2010 May 11.
Article in English | MEDLINE | ID: mdl-20461071

ABSTRACT

Environmental fluctuations lead to a rapid adjustment of the physiology of Escherichia coli, necessitating changes on every level of the underlying cellular and molecular network. Thus far, the majority of global analyses of E. coli stress responses have been limited to just one level, gene expression. Here, we incorporate the metabolite composition together with gene expression data to provide a more comprehensive insight on system level stress adjustments by describing detailed time-resolved E. coli response to five different perturbations (cold, heat, oxidative stress, lactose diauxie, and stationary phase). The metabolite response is more specific as compared with the general response observed on the transcript level and is reflected by much higher specificity during the early stress adaptation phase and when comparing the stationary phase response to other perturbations. Despite these differences, the response on both levels still follows the same dynamics and general strategy of energy conservation as reflected by rapid decrease of central carbon metabolism intermediates coinciding with downregulation of genes related to cell growth. Application of co-clustering and canonical correlation analysis on combined metabolite and transcript data identified a number of significant condition-dependent associations between metabolites and transcripts. The results confirm and extend existing models about co-regulation between gene expression and metabolites demonstrating the power of integrated systems oriented analysis.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Metabolomics , Models, Biological , Oxidative Stress , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Glucose/metabolism , Heat-Shock Response , Lactose/metabolism , Metabolic Networks and Pathways , Systems Biology
18.
Anal Chem ; 82(9): 3573-80, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20387792

ABSTRACT

The chemical composition of any wine sample contains numerous small molecules largely derived from three different sources: the grape berry, the yeast strain used for fermentation, and the containers used for wine making and storage. The combined sum of these small molecules present in the wine, therefore, might account for all wine specific features such as cultivar, vintage, origin, and quality. Still, most wine authentication procedures rely either on subjective human measures or if they are based on measurable features, they include a limited number of compounds. In this study, which is based on an untargeted UPLC-FT-ICR-MS-based approach, we provide data, demonstrating that unbiased and objective analytical chemistry in combination with multivariate statistical methods allows to reproducible classify/distinguish wine attributes like variety, origin, vintage, and quality.


Subject(s)
Metabolome , Wine/analysis , Chromatography, Liquid , Mass Spectrometry , Nanotechnology , Reproducibility of Results
19.
BMC Bioinformatics ; 10: 428, 2009 Dec 16.
Article in English | MEDLINE | ID: mdl-20015393

ABSTRACT

BACKGROUND: Metabolite profiling, the simultaneous quantification of multiple metabolites in an experiment, is becoming increasingly popular, particularly with the rise of systems-level biology. The workhorse in this field is gas-chromatography hyphenated with mass spectrometry (GC-MS). The high-throughput of this technology coupled with a demand for large experiments has led to data pre-processing, i.e. the quantification of metabolites across samples, becoming a major bottleneck. Existing software has several limitations, including restricted maximum sample size, systematic errors and low flexibility. However, the biggest limitation is that the resulting data usually require extensive hand-curation, which is subjective and can typically take several days to weeks. RESULTS: We introduce the TargetSearch package, an open source tool which is a flexible and accurate method for pre-processing even very large numbers of GC-MS samples within hours. We developed a novel strategy to iteratively correct and update retention time indices for searching and identifying metabolites. The package is written in the R programming language with computationally intensive functions written in C for speed and performance. The package includes a graphical user interface to allow easy use by those unfamiliar with R. CONCLUSIONS: TargetSearch allows fast and accurate data pre-processing for GC-MS experiments and overcomes the sample number limitations and manual curation requirements of existing software. We validate our method by carrying out an analysis against both a set of known chemical standard mixtures and of a biological experiment. In addition we demonstrate its capabilities and speed by comparing it with other GC-MS pre-processing tools. We believe this package will greatly ease current bottlenecks and facilitate the analysis of metabolic profiling data.


Subject(s)
Computational Biology/methods , Gas Chromatography-Mass Spectrometry/methods , Metabolome , Software , Databases, Factual , Pattern Recognition, Automated , Proteome/analysis , Proteomics/methods , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...