Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Haematologica ; 108(10): 2570-2581, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37439336

ABSTRACT

Children with Down syndrome (DS, trisomy 21) are at a significantly higher risk of developing acute leukemia compared to the overall population. Many studies investigating the link between trisomy 21 and leukemia initiation and progression have been conducted over the last two decades. Despite improved treatment regimens and significant progress in iden - tifying genes on chromosome 21 and the mechanisms by which they drive leukemogenesis, there is still much that is unknown. A focused group of scientists and clinicians with expertise in leukemia and DS met in October 2022 at the Jérôme Lejeune Foundation in Paris, France for the 1st International Symposium on Down Syndrome and Leukemia. This meeting was held to discuss the most recent advances in treatment regimens and the biology underlying the initiation, progression, and relapse of acute lymphoblastic leukemia and acute myeloid leukemia in children with DS. This review provides a summary of what is known in the field, challenges in the management of DS patients with leukemia, and key questions in the field.


Subject(s)
Down Syndrome , Leukemia, Myeloid, Acute , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Down Syndrome/complications , Down Syndrome/genetics , Leukemia, Myeloid, Acute/epidemiology , Acute Disease , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , France
2.
Cell Rep ; 42(8): 112897, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37516962

ABSTRACT

Cell identity is orchestrated through an interplay between transcription factor (TF) action and genome architecture. The mechanisms used by TFs to shape three-dimensional (3D) genome organization remain incompletely understood. Here we present evidence that the lineage-instructive TF CEBPA drives extensive chromatin compartment switching and promotes the formation of long-range chromatin hubs during induced B cell-to-macrophage transdifferentiation. Mechanistically, we find that the intrinsically disordered region (IDR) of CEBPA undergoes in vitro phase separation (PS) dependent on aromatic residues. Both overexpressing B cells and native CEBPA-expressing cell types such as primary granulocyte-macrophage progenitors, liver cells, and trophectoderm cells reveal nuclear CEBPA foci and long-range 3D chromatin hubs at CEBPA-bound regions. In short, we show that CEBPA can undergo PS through its IDR, which may underlie in vivo foci formation and suggest a potential role of PS in regulating CEBPA function.


Subject(s)
Chromatin , Gene Expression Regulation , Cell Nucleus , Macrophages
3.
Nat Rev Immunol ; 23(4): 206-221, 2023 04.
Article in English | MEDLINE | ID: mdl-36127477

ABSTRACT

Immune cell development and activation demand the precise and coordinated control of transcriptional programmes. Three-dimensional (3D) organization of the genome has emerged as an important regulator of chromatin state, transcriptional activity and cell identity by facilitating or impeding long-range genomic interactions among regulatory elements and genes. Chromatin folding thus enables cell type-specific and stimulus-specific transcriptional responses to extracellular signals, which are essential for the control of immune cell fate, for inflammatory responses and for generating a diverse repertoire of antigen receptor specificities. Here, we review recent findings connecting 3D genome organization to the control of immune cell differentiation and function, and discuss how alterations in genome folding may lead to immune dysfunction and malignancy.


Subject(s)
Chromatin , Chromosomes , Humans , Chromatin/genetics , Cell Differentiation/genetics , Genome
4.
Nat Commun ; 13(1): 4342, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35896525

ABSTRACT

Innate immune responses rely on inducible gene expression programmes which, in contrast to steady-state transcription, are highly dependent on cohesin. Here we address transcriptional parameters underlying this cohesin-dependence by single-molecule RNA-FISH and single-cell RNA-sequencing. We show that inducible innate immune genes are regulated predominantly by an increase in the probability of active transcription, and that probabilities of enhancer and promoter transcription are coordinated. Cohesin has no major impact on the fraction of transcribed inducible enhancers, or the number of mature mRNAs produced per transcribing cell. Cohesin is, however, required for coupling the probabilities of enhancer and promoter transcription. Enhancer-promoter coupling may not be explained by spatial proximity alone, and at the model locus Il12b can be disrupted by selective inhibition of the cohesinopathy-associated BET bromodomain BD2. Our data identify discrete steps in enhancer-mediated inducible gene expression that differ in cohesin-dependence, and suggest that cohesin and BD2 may act on shared pathways.


Subject(s)
Chromosomal Proteins, Non-Histone , Enhancer Elements, Genetic , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Enhancer Elements, Genetic/genetics , Probability , RNA , Cohesins
5.
Cancers (Basel) ; 13(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34439298

ABSTRACT

Children with Down syndrome (DS) are particularly prone to haematopoietic disorders. Paediatric myeloid malignancies in DS occur at an unusually high frequency and generally follow a well-defined stepwise clinical evolution. First, the acquisition of mutations in the GATA1 transcription factor gives rise to a transient myeloproliferative disorder (TMD) in DS newborns. While this condition spontaneously resolves in most cases, some clones can acquire additional mutations, which trigger myeloid leukaemia of Down syndrome (ML-DS). These secondary mutations are predominantly found in chromatin and epigenetic regulators-such as cohesin, CTCF or EZH2-and in signalling mediators of the JAK/STAT and RAS pathways. Most of them are also found in non-DS myeloid malignancies, albeit at extremely different frequencies. Intriguingly, mutations in proteins involved in the three-dimensional organization of the genome are found in nearly 50% of cases. How the resulting mutant proteins cooperate with trisomy 21 and mutant GATA1 to promote ML-DS is not fully understood. In this review, we summarize and discuss current knowledge about the sequential acquisition of genomic alterations in ML-DS.

6.
Nat Genet ; 52(7): 655-661, 2020 07.
Article in English | MEDLINE | ID: mdl-32514124

ABSTRACT

Three-dimensional organization of the genome is important for transcriptional regulation1-7. In mammals, CTCF and the cohesin complex create submegabase structures with elevated internal chromatin contact frequencies, called topologically associating domains (TADs)8-12. Although TADs can contribute to transcriptional regulation, ablation of TAD organization by disrupting CTCF or the cohesin complex causes modest gene expression changes13-16. In contrast, CTCF is required for cell cycle regulation17, embryonic development and formation of various adult cell types18. To uncouple the role of CTCF in cell-state transitions and cell proliferation, we studied the effect of CTCF depletion during the conversion of human leukemic B cells into macrophages with minimal cell division. CTCF depletion disrupts TAD organization but not cell transdifferentiation. In contrast, CTCF depletion in induced macrophages impairs the full-blown upregulation of inflammatory genes after exposure to endotoxin. Our results demonstrate that CTCF-dependent genome topology is not strictly required for a functional cell-fate conversion but facilitates a rapid and efficient response to an external stimulus.


Subject(s)
B-Lymphocytes/physiology , CCCTC-Binding Factor/physiology , Macrophages/physiology , Myelopoiesis/physiology , Antigens, Differentiation/metabolism , CCCTC-Binding Factor/genetics , Cell Line, Tumor , Cell Proliferation/physiology , Chromatin/physiology , Gene Expression Regulation , Humans , Molecular Conformation , Myelopoiesis/genetics , Protein Conformation
7.
Front Oncol ; 9: 867, 2019.
Article in English | MEDLINE | ID: mdl-31552185

ABSTRACT

Classical driver mutations in acute myeloid leukemia (AML) typically affect regulators of cell proliferation, differentiation, and survival. The selective advantage of increased proliferation, improved survival, and reduced differentiation on leukemia progression is immediately obvious. Recent large-scale sequencing efforts have uncovered numerous novel AML-associated mutations. Interestingly, a substantial fraction of the most frequently mutated genes encode general regulators of transcription and chromatin state. Understanding the selective advantage conferred by these mutations remains a major challenge. A striking example are mutations in genes of the cohesin complex, a major regulator of three-dimensional genome organization. Several landmark studies have shown that cohesin mutations perturb the balance between self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPC). Emerging data now begin to uncover the molecular mechanisms that underpin this phenotype. Among these mechanisms is a role for cohesin in the control of inflammatory responses in HSPCs and myeloid cells. Inflammatory signals limit HSPC self-renewal and drive HSPC differentiation. Consistent with this, cohesin mutations promote resistance to inflammatory signals, and may provide a selective advantage for AML progression. In this review, we discuss recent progress in understanding cohesin mutations in AML, and speculate whether vulnerabilities associated with these mutations could be exploited therapeutically.

8.
Nat Immunol ; 19(9): 932-941, 2018 09.
Article in English | MEDLINE | ID: mdl-30127433

ABSTRACT

Cohesin is important for 3D genome organization. Nevertheless, even the complete removal of cohesin has surprisingly little impact on steady-state gene transcription and enhancer activity. Here we show that cohesin is required for the core transcriptional response of primary macrophages to microbial signals, and for inducible enhancer activity that underpins inflammatory gene expression. Consistent with a role for inflammatory signals in promoting myeloid differentiation of hematopoietic stem and progenitor cells (HPSCs), cohesin mutations in HSPCs led to reduced inflammatory gene expression and increased resistance to differentiation-inducing inflammatory stimuli. These findings uncover an unexpected dependence of inducible gene expression on cohesin, link cohesin with myeloid differentiation, and may help explain the prevalence of cohesin mutations in human acute myeloid leukemia.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Differentiation/genetics , Cell Self Renewal/genetics , Chromosomal Proteins, Non-Histone/metabolism , Hematopoietic Stem Cells/physiology , Leukemia, Myeloid, Acute/genetics , Macrophages/physiology , Nuclear Proteins/genetics , Phosphoproteins/genetics , Animals , Cell Cycle Proteins/genetics , Cells, Cultured , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Inflammation/genetics , Lipopolysaccharides/immunology , Mice , Mice, Knockout , Mutation/genetics , Cohesins
9.
Curr Opin Hematol ; 25(4): 323-328, 2018 07.
Article in English | MEDLINE | ID: mdl-29702522

ABSTRACT

PURPOSE OF REVIEW: The three-dimensional organization of the genome inside the nucleus impacts on key aspects of genome function, including transcription, DNA replication and repair. The chromosome maintenance complex cohesin and the DNA binding protein CTCF cooperate to drive the formation of self-interacting topological domains. This facilitates transcriptional regulation via enhancer-promoter interactions, controls the distribution and release of torsional strain, and affects the frequency with which particular translocations arise, based on the spatial proximity of translocation partners. Here we discuss recent insights into the mechanisms of three-dimensional genome organization, their relationship to haematopoietic differentiation and malignant transformation. RECENT FINDINGS: Cohesin mutations are frequently found in myeloid malignancies. Significantly, cohesin mutations can drive increased self-renewal of haematopoietic stem and progenitor cells, which may facilitate the accumulation of genetic lesions and leukaemic transformation. It is therefore important to elucidate the mechanisms that link cohesin to pathways that regulate the balance between self-renewal and differentiation. Chromosomal translocations are key to lymphoid malignancies, and recent findings link three-dimensional genome organization to the frequency and the genomic position of DNA double strand breaks. SUMMARY: Three-dimensional genome organization can help explain genome function in normal and malignant haematopoiesis.


Subject(s)
Cell Nucleus , Cell Transformation, Neoplastic , Genome, Human , Hematopoiesis , Hematopoietic Stem Cells , Leukemia , Animals , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Differentiation , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cell Nucleus/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA Breaks, Double-Stranded , DNA Replication , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Humans , Leukemia/genetics , Leukemia/metabolism , Leukemia/pathology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Cohesins
10.
Biol Open ; 4(7): 852-7, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25979705

ABSTRACT

The steroid hormone ecdysone is a central regulator of insect development. In this report we show that CTCF expression in the prothoracic gland is required for full transcriptional activation of the Halloween genes spookier, shadow and noppera-bo, which encode ecdysone biosynthetic enzymes, and for proper timing of ecdysone-responsive gene expression. Loss of CTCF results in delayed and less synchronized larval development that can only be rescued by feeding larvae with both, the steroid hormone 20-hydroxyecdysone and cholesterol. Moreover, CTCF-knockdown in prothoracic gland cells leads to increased lipid accumulation. In conclusion, the insulator protein CTCF is required for Halloween gene expression and cholesterol homeostasis in ecdysone-producing cells controlling steroidogenesis.

11.
EMBO J ; 33(6): 637-47, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24502977

ABSTRACT

Insulators are DNA-protein complexes that play a central role in chromatin organization and regulation of gene expression. In Drosophila different proteins, dCTCF, Su(Hw), and BEAF bind to specific subsets of insulators most of them having in common CP190. It has been shown that there are a number of CP190-binding sites that are not shared with any other known insulator protein, suggesting that other proteins could cooperate with CP190 to regulate insulator activity. Here we report on the identification of two previously uncharacterized proteins as CP190-interacting proteins, that we have named Ibf1 and Ibf2. These proteins localize at insulator bodies and associate with chromatin at CP190-binding sites throughout the genome. We also show that Ibf1 and Ibf2 are DNA-binding proteins that form hetero-oligomers that mediate CP190 binding to chromatin. Moreover, Ibf1 and Ibf2 are necessary for insulator activity in enhancer-blocking assays and Ibf2 null mutation cause a homeotic phenotype. Taken together our data reveal a novel pathway of CP190 recruitment to chromatin that is required for insulator activity.


Subject(s)
DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila/genetics , Insulator Elements/physiology , Microtubule-Associated Proteins/metabolism , Multiprotein Complexes/metabolism , Nuclear Proteins/metabolism , Amino Acid Sequence , Animals , Base Sequence , Blotting, Western , Chromatin Immunoprecipitation , DNA Primers/genetics , DNA-Binding Proteins/genetics , Drosophila/physiology , Drosophila Proteins/genetics , Electrophoretic Mobility Shift Assay , Gene Expression Profiling , Immunoprecipitation , Insulator Elements/genetics , Molecular Sequence Data , Multiprotein Complexes/genetics , Sequence Analysis, DNA
12.
J Hered ; 100(2): 158-69, 2009.
Article in English | MEDLINE | ID: mdl-18974398

ABSTRACT

Rhesus macaque (Macaca mulatta) and long-tailed macaque (Macaca fascicularis) are the 2 most commonly used primate model species in biomedical sciences. Although morphological studies have revealed a weak hybridization at the interspecific contact zone, in the north of Indochina, a molecular study has suggested an ancient introgression from rhesus to long-tailed macaque into the Indo-Chinese peninsula. However, the gene flow between these 2 taxa has never been quantified using genetic data and theoretical models. In this study, we have examined genetic variation within and between the parapatric Chinese rhesus macaque and Indo-Chinese long-tailed macaque populations, using 13 autosomal, 5 sex-linked microsatellite loci and mitochondrial DNA sequence data. From these data, we assessed genetic structure and estimated gene flow using a Bayesian clustering approach and the "Isolation with Migration" model. Our results reveal a weak interspecific genetic differentiation at both autosomal and sex-linked loci, suggesting large population sizes and/or gene flow between populations. According to the Bayesian clustering, Chinese rhesus macaque is a highly homogeneous gene pool that contributes strongly to the current Indo-Chinese long-tailed macaque genetic makeup, whether or not current admixture is assumed. Coalescent simulations, which integrated the characteristics of the loci, pointed out 1) a higher effective population size in rhesus macaque, 2) no mitochondrial gene flow, and 3) unilateral and male-mediated nuclear gene flow of approximately 10 migrants per generation from rhesus to long-tailed macaque. These patterns of genetic structure and gene flow suggest extensive ancient introgression from Chinese rhesus macaque into the Indo-Chinese long-tailed macaque population.


Subject(s)
Genetic Speciation , Hybridization, Genetic/genetics , Macaca fascicularis/genetics , Macaca mulatta/genetics , Animal Migration/physiology , Animals , Bayes Theorem , China , Evolution, Molecular , Female , Genetics, Population , Male , Models, Animal , Sex Chromosomes , Vietnam
13.
Nucleic Acids Res ; 36(21): 6926-33, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18978017

ABSTRACT

The homeotic Abdominal-B (Abd-B) gene expression depends on a modular cis-regulatory region divided into discrete functional domains (iab) that control the expression of the gene in a particular segment of the fly. These domains contain regulatory elements implicated in both initiation and maintenance of homeotic gene expression and elements that separate the different domains. In this paper we have performed an extensive analysis of the iab-6 regulatory region, which regulates Abd-B expression at abdominal segment A6 (PS11), and we have characterized two new polycomb response elements (PREs) within this domain. We report that PREs at Abd-B cis-regulatory domains present a particular chromatin structure which is nuclease accessible all along Drosophila development and both in active and repressed states. We also show that one of these regions contains a dCTCF and CP190 dependent activity in transgenic enhancer-blocking assays, suggesting that it corresponds to the Fab-6 boundary element of the Drosophila bithorax complex.


Subject(s)
Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila/genetics , Homeodomain Proteins/genetics , Response Elements , Animals , Deoxyribonuclease I/metabolism , Drosophila/embryology , Drosophila/metabolism , Genome, Insect , Polycomb Repressive Complex 1
SELECTION OF CITATIONS
SEARCH DETAIL