Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Radiat Biol ; 98(1): 18-29, 2022.
Article in English | MEDLINE | ID: mdl-34586971

ABSTRACT

BACKGROUND AND PURPOSE: Radon and its radioactive progenies are the most important source of ionizing radiation of natural origin, being classified as a Group 1 carcinogen. The aim of this study is to investigate the genotoxic effects of a wide range of indoor radon concentrations, as well as the kinetics of the process of repairing DNA-induced lesions by a challenging dose of gamma irradiation. MATERIAL AND METHODS: Female subjects residing in the Baita-Stei radon priority area were selected as the exposed group. The reference group was comprised of women from the same county (Bihor), but located in an area with an average indoor radon concentration typical of the county from which they were taken. Radon concentration values of 300 Bq/m3 and 148 Bq/m3, respectively, were chosen as a threshold in order to capture the impact of radon exposure between the groups. The alkaline comet assay was used in order to measure the DNA damage, as well as the repair kinetics at 2 and 24 h after 2 Gy challenging doses of gamma irradiation using peripheral blood lymphocytes. From the serum of the subjects, the oxidative damage by 8-hydroxydeoxyguanosine as well as the PARP induction was evaluated. The chromosomal aberrations were evaluated using the Cytokinesis Block MicroNucleus Assay. RESULTS: A statistically significant increase was observed in terms of DNA-induced lesions assessed by comet assay for the exposed group compared to the reference group. A positive correlation was obtained between DNA damage and the annual effective dose, respectively with the radon progenies concentrations. A statistically significant difference was also observed for the frequency of the micronuclei between the exposed - reference groups. Significantly faster repair kinetics of DNA-induced lesions was recorded for the first 2 h after gamma irradiation in the reference group compared to the exposed group. Using the threshold of 300 Bq/m3 for radon concentration, faster kinetics of DNA damage repair for people exposed to low radon concentrations, compared to those exposed to higher concentrations for the second phase of DNA repair kinetics was observed. CONCLUSION: An increased radiosensitivity of lymphocytes, as well as slower repair kinetics, may be associated with exposure to higher indoor radon concentrations.


Subject(s)
Air Pollutants, Radioactive , Air Pollution, Indoor , Radiation Monitoring , Radon , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , DNA , DNA Damage , Female , Humans , Micronucleus Tests , Radon/adverse effects , Radon/analysis
2.
Article in English | MEDLINE | ID: mdl-34886208

ABSTRACT

The purpose of this article is the assessment of energy efficiency and indoor air quality for a single-family house located in Cluj-Napoca County, Romania. The studied house is meant to be an energy-efficient building with thermal insulation, low U-value windows, and a high efficiency boiler. Increasing the energy efficiency of the house leads to lower indoor air quality, due to lack of natural ventilation. As the experimental campaign regarding indoor air quality revealed, there is a need to find a balance between energy consumption and the quality of the indoor air. To achieve superior indoor air quality, the proposed mitigation systems (decentralized mechanical ventilation with heat recovery combined with a minimally invasive active sub-slab depressurization) have been installed to reduce the high radon level in the dwelling, achieving an energy reduction loss of up to 86%, compared to the traditional natural ventilation of the house. The sub-slab depressurization system was installed in the room with the highest radon level, while the local ventilation system with heat recovery has been installed in the exterior walls of the house. The results have shown significant improvement in the level of radon decreasing the average concentration from 425 to 70 Bq/m3, respectively the carbon dioxide average of the measurements being around 760 ppm. The thermal comfort improves significantly also, by stabilizing the indoor temperature at 21 °C, without any important fluctuations. The installation of this system has led to higher indoor air quality, with low energy costs and significant energy savings compared to conventional ventilation (by opening windows).


Subject(s)
Air Pollutants, Radioactive , Air Pollution, Indoor , Radon , Air Pollutants, Radioactive/analysis , Air Pollution, Indoor/analysis , Housing , Radon/analysis , Romania , Ventilation
SELECTION OF CITATIONS
SEARCH DETAIL