Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters











Publication year range
1.
Nat Commun ; 15(1): 6111, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030207

ABSTRACT

Copper and nitrogen co-doped carbon catalysts exhibit a remarkable behavior during the electrocatalytic CO2 reduction (CO2RR), namely, the formation of metal nanoparticles from Cu single atoms, and their subsequent reversible redispersion. Here we show that the switchable nature of these species holds the key for the on-demand control over the distribution of CO2RR products, a lack of which has thus far hindered the wide-spread practical adoption of CO2RR. By intermitting pulses of a working cathodic potential with pulses of anodic potential, we were able to achieve a controlled fragmentation of the Cu particles and partial regeneration of single atom sites. By tuning the pulse durations, and by tracking the catalyst's evolution using operando quick X-ray absorption spectroscopy, the speciation of the catalyst can be steered toward single atom sites, ultrasmall metal clusters or large metal nanoparticles, each exhibiting unique CO2RR functionalities.

2.
Adv Mater ; 36(27): e2401133, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38619914

ABSTRACT

The electrochemical reduction of nitrates (NO3 -) enables a pathway for the carbon neutral synthesis of ammonia (NH3), via the nitrate reduction reaction (NO3RR), which has been demonstrated at high selectivity. However, to make NH3 synthesis cost-competitive with current technologies, high NH3 partial current densities (jNH3) must be achieved to reduce the levelized cost of NH3. Here, the high NO3RR activity of Fe-based materials is leveraged to synthesize a novel active particle-active support system with Fe2O3 nanoparticles supported on atomically dispersed Fe-N-C. The optimized 3×Fe2O3/Fe-N-C catalyst demonstrates an ultrahigh NO3RR activity, reaching a maximum jNH3 of 1.95 A cm-2 at a Faradaic efficiency (FE) for NH3 of 100% and an NH3 yield rate over 9 mmol hr-1 cm-2. Operando XANES and post-mortem XPS reveal the importance of a pre-reduction activation step, reducing the surface Fe2O3 (Fe3+) to highly active Fe0 sites, which are maintained during electrolysis. Durability studies demonstrate the robustness of both the Fe2O3 particles and Fe-Nx sites at highly cathodic potentials, maintaining a current of -1.3 A cm-2 over 24 hours. This work exhibits an effective and durable active particle-active support system enhancing the performance of the NO3RR, enabling industrially relevant current densities and near 100% selectivity.

3.
ACS Energy Lett ; 9(2): 644-652, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38356936

ABSTRACT

The key role of morphological defects (e.g., irregular steps and dislocations) on the selectivity of model Cu catalysts for the electrocatalytic reduction of CO2 (CO2RR) is illustrated here. Cu(111) single-crystal surfaces prepared under ultrahigh vacuum (UHV) conditions and presenting similar chemical and local microscopic surface features were found to display different product selectivity during the CO2RR. In particular, changes in selectivity from hydrogen-dominant to hydrocarbon-dominant product distributions were observed based on the number of CO2RR electrolysis pretreatment cycles performed prior to a subsequent UHV surface regeneration treatment, which lead to surfaces with seemingly identical chemical composition and local crystallographic structure. However, significant mesostructural changes were observed through a micron-scale microscopic analysis, including a higher density of irregular steps on the samples producing hydrocarbons. Thus, our findings highlight that step edges are key for C-C coupling in the CO2RR and that not only atomistic but also mesoscale characterization of electrocatalytic materials is needed in order to comprehend complex selectivity trends.

4.
ACS Appl Mater Interfaces ; 16(5): 6562-6568, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38273704

ABSTRACT

A key challenge in electrocatalysis remains controlling a catalyst's structural, chemical, and electrical properties under reaction conditions. While organic coatings showed promise for enhancing the selectivity and stability of catalysts for CO2 electroreduction (CO2RR), their impact on the chemical state of underlying metal electrodes has remained unclear. In this study, we show that organic thin films on polycrystalline copper (Cu) enable retaining Cu+ species at reducing potentials down to -1.0 V vs RHE, as evidenced by operando Raman and quasi in situ X-ray photoelectron spectroscopy. In situ electrochemical atomic force microscopy revealed the integrity of the porous organic film and nearly unaltered Cu electrode morphology. While the pristine thin film enhances the CO2-to-ethylene conversion, the addition of organic modifiers into electrolytes gives rise to improved CO2RR performance stability. Our findings showcase hybrid metal-organic systems as a versatile approach to control, beyond morphology and local environment, the oxidation states of catalysts and energy conversion materials.

5.
EES Catal ; 2(1): 311-323, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38222061

ABSTRACT

Electrochemical reduction of CO2 (CO2RR) is an attractive technology to reintegrate the anthropogenic CO2 back into the carbon cycle driven by a suitable catalyst. This study employs highly efficient multi-carbon (C2+) producing Cu2O nanocubes (NCs) decorated with CO-selective Au nanoparticles (NPs) to investigate the correlation between a high CO surface concentration microenvironment and the catalytic performance. Structure, morphology and near-surface composition are studied via operando X-ray absorption spectroscopy and surface-enhanced Raman spectroscopy, operando high-energy X-ray diffraction as well as quasi in situ X-ray photoelectron spectroscopy. These operando studies show the continuous evolution of the local structure and chemical environment of our catalysts during reaction conditions. Along with its alloy formation, a CO-rich microenvironment as well as weakened average CO binding on the catalyst surface during CO2RR is detected. Linking these findings to the catalytic function, a complex compositional interplay between Au and Cu is revealed in which higher Au loadings primarily facilitate CO formation. Nonetheless, the strongest improvement in C2+ formation appears for the lowest Au loadings, suggesting a beneficial role of the Au-Cu atomic interaction for the catalytic function in CO2RR. This study highlights the importance of site engineering and operando investigations to unveil the electrocatalyst's adaptations to the reaction conditions, which is a prerequisite to understand its catalytic behavior.

6.
Nat Commun ; 14(1): 4791, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37553328

ABSTRACT

Water electrolysis to produce 'green H2' with renewable energy is a promising option for the upcoming green economy. However, the slow and complex oxygen evolution reaction at the anode limits the efficiency. Co3O4 with added iron is a capable catalyst for this reaction, but the role of iron is presently unclear. To investigate this topic, we compare epitaxial Co3O4(111), CoFe2O4(111), and Fe3O4(111) thin film model electrocatalysts, combining quasi in-situ preparation and characterization in ultra-high vacuum with electrochemistry experiments. The well-defined composition and structure of the thin epitaxial films permits the obtention of quantitatively comparable results. CoFe2O4(111) is found to be up to about four times more active than Co3O4(111) and about nine times more than Fe3O4(111), with the activity depending acutely on the Co/Fe concentration ratio. Under reaction conditions, all three oxides are covered by oxyhydroxide. For CoFe2O4(111), the oxyhydroxide's Fe/Co concentration ratio is stabilized by partial iron dissolution.

7.
Nat Commun ; 14(1): 4649, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37532720

ABSTRACT

Gallium-containing alloys have recently been reported to hydrogenate CO2 to methanol at ambient pressures. However, a full understanding of the Ga-promoted catalysts is still missing due to the lack of information about the surface structures formed under reaction conditions. Here, we employed near ambient pressure scanning tunneling microscopy and x-ray photoelectron spectroscopy to monitor the evolution of well-defined Cu-Ga surfaces during CO2 hydrogenation. We show the formation of two-dimensional Ga(III) oxide islands embedded into the Cu surface in the reaction atmosphere. The islands are a few atomic layers in thickness and considerably differ from bulk Ga2O3 polymorphs. Such a complex structure, which could not be determined with conventional characterization methods on powder catalysts, should be used for elucidating the reaction mechanism on the Ga-promoted metal catalysts.

9.
Nat Commun ; 14(1): 4554, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37507382

ABSTRACT

Electrocatalytic reduction of waste nitrates (NO3-) enables the synthesis of ammonia (NH3) in a carbon neutral and decentralized manner. Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts demonstrate a high catalytic activity and uniquely favor mono-nitrogen products. However, the reaction fundamentals remain largely underexplored. Herein, we report a set of 14; 3d-, 4d-, 5d- and f-block M-N-C catalysts. The selectivity and activity of NO3- reduction to NH3 in neutral media, with a specific focus on deciphering the role of the NO2- intermediate in the reaction cascade, reveals strong correlations (R=0.9) between the NO2- reduction activity and NO3- reduction selectivity for NH3. Moreover, theoretical computations reveal the associative/dissociative adsorption pathways for NO2- evolution, over the normal M-N4 sites and their oxo-form (O-M-N4) for oxyphilic metals. This work provides a platform for designing multi-element NO3RR cascades with single-atom sites or their hybridization with extended catalytic surfaces.

10.
J Am Chem Soc ; 145(9): 5242-5251, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36812448

ABSTRACT

Rational innovation of electrocatalysts requires detailed knowledge of spatial property variations across the solid-electrolyte interface. We introduce correlative atomic force microscopy (AFM) to simultaneously probe, in situ and at the nanoscale, electrical conductivity, chemical-frictional, and morphological properties of a bimetallic copper-gold system for CO2 electroreduction. In air, water, and bicarbonate electrolyte, current-voltage curves reveal resistive CuOx islands in line with local current contrasts, while frictional imaging indicates qualitative variations in the hydration layer molecular ordering upon change from water to electrolyte. Nanoscale current contrast on polycrystalline Au shows resistive grain boundaries and electrocatalytically passive adlayer regions. In situ conductive AFM imaging in water shows mesoscale regions of low current and reveals that reduced interfacial electric currents are accompanied by increased friction forces, thus indicating variations in the interfacial molecular ordering affected by the electrolyte composition and ionic species. These findings provide insights into how local electrochemical environments and adsorbed species affect interfacial charge transfer processes and support building in situ structure-property relationships in catalysis and energy conversion research.

11.
ACS Appl Mater Interfaces ; 14(43): 48609-48618, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36255411

ABSTRACT

Ultrathin silica films are considered suitable two-dimensional model systems for the study of fundamental chemical and physical properties of all-silica zeolites and their derivatives, as well as novel supports for the stabilization of single atoms. In the present work, we report the creation of a new model catalytic support based on the surface functionalization of different silica bilayer (BL) polymorphs with well-defined atomic structures. The functionalization is carried out by means of in situ H-plasma treatments at room temperature. Low energy electron diffraction and microscopy data indicate that the atomic structure of the films remains unchanged upon treatment. Comparing the experimental results (photoemission and infrared absorption spectra) with density functional theory simulations shows that H2 is added via the heterolytic dissociation of an interlayer Si-O-Si siloxane bond and the subsequent formation of a hydroxyl and a hydride group in the top and bottom layers of the silica film, respectively. Functionalization of the silica films constitutes the first step into the development of a new type of model system of single-atom catalysts where metal atoms with different affinities for the functional groups can be anchored in the SiO2 matrix in well-established positions. In this way, synergistic and confinement effects between the active centers can be studied in a controlled manner.

12.
J Mater Chem A Mater ; 10(26): 14041-14050, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35872703

ABSTRACT

Catalyst restructuring during electrochemical reactions is a critical but poorly understood process that determines the underlying structure-property relationships during catalysis. In the electrocatalytic reduction of CO2 (CO2RR), it is known that Cu, the most favorable catalyst for hydrocarbon generation, is highly susceptible to restructuring in the presence of halides. Iodide ions, in particular, greatly improved the catalyst performance of Cu foils, although a detailed understanding of the morphological evolution induced by iodide remains lacking. It is also unclear if a similar enhancement transfers to catalyst particles. Here, we first demonstrate that iodide pre-treatment improves the selectivity of hexagonally ordered Cu-island arrays towards ethylene and oxygenate products. Then, the morphological changes in these arrays caused by iodide treatment and during CO2RR are visualized using electrochemical transmission electron microscopy. Our observations reveal that the Cu islands evolve into tetrahedral CuI, which then become 3-dimensional chains of copper nanoparticles under CO2RR conditions. Furthermore, CuI and Cu2O particles re-precipitated when the samples are returned to open circuit potential, implying that iodide and Cu+ species are present within these chains. This work provides detailed insight into the role of iodide, and its impact on the prevailing morphologies that exist during CO2RR.

13.
Angew Chem Int Ed Engl ; 61(23): e202202556, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35297151

ABSTRACT

The electrochemical nitrate reduction reaction (NITRR) provides a promising solution for restoring the imbalance in the global nitrogen cycle while enabling a sustainable and decentralized route to source ammonia. Here, we demonstrate a novel electrocatalyst for NITRR consisting of Rh clusters and single-atoms dispersed onto Cu nanowires (NWs), which delivers a partial current density of 162 mA cm-2 for NH3 production and a Faradaic efficiency (FE) of 93 % at -0.2 V vs. RHE. The highest ammonia yield rate reached a record value of 1.27 mmol h-1 cm-2 . Detailed investigations by electron paramagnetic resonance, in situ infrared spectroscopy, differential electrochemical mass spectrometry and density functional theory modeling suggest that the high activity originates from the synergistic catalytic cooperation between Rh and Cu sites, whereby adsorbed hydrogen on Rh site transfers to vicinal *NO intermediate species adsorbed on Cu promoting the hydrogenation and ammonia formation.

14.
Angew Chem Int Ed Engl ; 61(15): e202114707, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35102658

ABSTRACT

Electrochemical CO2 reduction is a potential approach to convert CO2 into valuable chemicals using electricity as feedstock. Abundant and affordable catalyst materials are needed to upscale this process in a sustainable manner. Nickel-nitrogen-doped carbon (Ni-N-C) is an efficient catalyst for CO2 reduction to CO, and the single-site Ni-Nx motif is believed to be the active site. However, critical metrics for its catalytic activity, such as active site density and intrinsic turnover frequency, so far lack systematic discussion. In this work, we prepared a set of covalent organic framework (COF)-derived Ni-N-C catalysts, for which the Ni-Nx content could be adjusted by the pyrolysis temperature. The combination of high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure evidenced the presence of Ni single-sites, and quantitative X-ray photoemission addressed the relation between active site density and turnover frequency.

15.
Adv Sci (Weinh) ; 9(8): e2105380, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35060365

ABSTRACT

Photoelectrochemical devices integrate the processes of light absorption, charge separation, and catalysis for chemical synthesis. The monolithic design is interesting for space applications, where weight and volume constraints predominate. Hindered gas bubble desorption and the lack of macroconvection processes in reduced gravitation, however, limit its application in space. Physico-chemical modifications of the electrode surface are required to induce gas bubble desorption and ensure continuous device operation. A detailed investigation of the electrocatalyst nanostructure design for light-assisted hydrogen production in microgravity environment is described. p-InP coated with a rhodium (Rh) electrocatalyst layer fabricated by shadow nanosphere lithography is used as a model device. Rh is deposited via physical vapor deposition (PVD) or photoelectrodeposition through a mask of polystyrene (PS) particles. It is observed that the PS sphere size and electrocatalyst deposition technique alter the electrode surface wettability significantly, controlling hydrogen gas bubble detachment and photocurrent-voltage characteristics. The highest, most stable current density of 37.8 mA cm-2 is achieved by depositing Rh via PVD through 784 nm sized PS particles. The increased hydrophilicity of the photoelectrode results in small gas bubble contact angles and weak frictional forces at the solid-gas interface which cause enhanced gas bubble detachment and enhanced device efficiency.

16.
Chem Sci ; 12(42): 14241-14253, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34760210

ABSTRACT

Oxidized copper surfaces have attracted significant attention in recent years due to their unique catalytic properties, including their enhanced hydrocarbon selectivity during the electrochemical reduction of CO2. Although oxygen plasma has been used to create highly active copper oxide electrodes for CO2RR, how such treatment alters the copper surface is still poorly understood. Here, we study the oxidation of Cu(100) and Cu(111) surfaces by sequential exposure to a low-pressure oxygen plasma at room temperature. We used scanning tunnelling microscopy (STM), low energy electron microscopy (LEEM), X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption fine structure spectroscopy (NEXAFS) and low energy electron diffraction (LEED) for the comprehensive characterization of the resulting oxide films. O2-plasma exposure initially induces the growth of 3-dimensional oxide islands surrounded by an O-covered Cu surface. With ongoing plasma exposure, the islands coalesce and form a closed oxide film. Utilizing spectroscopy, we traced the evolution of metallic Cu, Cu2O and CuO species upon oxygen plasma exposure and found a dependence of the surface structure and chemical state on the substrate's orientation. On Cu(100) the oxide islands grow with a lower rate than on the (111) surface. Furthermore, while on Cu(100) only Cu2O is formed during the initial growth phase, both Cu2O and CuO species are simultaneously generated on Cu(111). Finally, prolonged oxygen plasma exposure results in a sandwiched film structure with CuO at the surface and Cu2O at the interface to the metallic support. A stable CuO(111) surface orientation is identified in both cases, aligned to the Cu(111) support, but with two coexisting rotational domains on Cu(100). These findings illustrate the possibility of tailoring the oxidation state, structure and morphology of metallic surfaces for a wide range of applications through oxygen plasma treatments.

17.
Rev Sci Instrum ; 92(7): 074104, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34340410

ABSTRACT

Electrocatalyst surfaces prepared under ultrahigh vacuum (UHV) conditions can create model surfaces to better connect theoretical calculations with experimental studies. The development of a single crystal sample holder and inert electrochemical cells prepared with modularity and chemical stability in mind would allow for expensive single crystals to be reused indefinitely in both UHV and electrochemical settings. This sample holder shows reproducible surface preparations for single crystal samples and consistent electrochemical experiments without the introduction of impurities into the surface. The presented setup has been used as a critical piece for the characterization of Cu(111) surfaces under CO2 electrochemical reduction reaction conditions as a test case.

18.
ACS Catal ; 11(13): 7694-7701, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34239771

ABSTRACT

Electrochemical reduction of carbon dioxide (CO2RR) is an attractive route to close the carbon cycle and potentially turn CO2 into valuable chemicals and fuels. However, the highly selective generation of multicarbon products remains a challenge, suffering from poor mechanistic understanding. Herein, we used operando Raman spectroscopy to track the potential-dependent reduction of Cu2O nanocubes and the surface coverage of reaction intermediates. In particular, we discovered that the potential-dependent intensity ratio of the Cu-CO stretching band to the CO rotation band follows a volcano trend similar to the CO2RR Faradaic efficiency for multicarbon products. By combining operando spectroscopic insights with Density Functional Theory, we proved that this ratio is determined by the CO coverage and that a direct correlation exists between the potential-dependent CO coverage, the preferred C-C coupling configuration, and the selectivity to C2+ products. Thus, operando Raman spectroscopy can serve as an effective method to quantify the coverage of surface intermediates during an electrocatalytic reaction.

19.
J Phys Condens Matter ; 33(15)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33825698

ABSTRACT

This review features state-of-the-artin situandoperandoelectron microscopy (EM) studies of heterogeneous catalysts in gas and liquid environments during reaction. Heterogeneous catalysts are important materials for the efficient production of chemicals/fuels on an industrial scale and for energy conversion applications. They also play a central role in various emerging technologies that are needed to ensure a sustainable future for our society. Currently, the rational design of catalysts has largely been hampered by our lack of insight into the working structures that exist during reaction and their associated properties. However, elucidating the working state of catalysts is not trivial, because catalysts are metastable functional materials that adapt dynamically to a specific reaction condition. The structural or morphological alterations induced by chemical reactions can also vary locally. A complete description of their morphologies requires that the microscopic studies undertaken span several length scales. EMs, especially transmission electron microscopes, are powerful tools for studying the structure of catalysts at the nanoscale because of their high spatial resolution, relatively high temporal resolution, and complementary capabilities for chemical analysis. Furthermore, recent advances have enabled the direct observation of catalysts under realistic environmental conditions using specialized reaction cells. Here, we will critically discuss the importance of spatially-resolvedoperandomeasurements and the available experimental setups that enable (1) correlated studies where EM observations are complemented by separate measurements of reaction kinetics or spectroscopic analysis of chemical species during reaction or (2) real-time studies where the dynamics of catalysts are followed with EM and the catalytic performance is extracted directly from the reaction cell that is within the EM column or chamber. Examples of current research in this field will be presented. Challenges in the experimental application of these techniques and our perspectives on the field's future directions will also be discussed.

20.
Nat Commun ; 12(1): 1435, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33664267

ABSTRACT

Although Cu/ZnO-based catalysts have been long used for the hydrogenation of CO2 to methanol, open questions still remain regarding the role and the dynamic nature of the active sites formed at the metal-oxide interface. Here, we apply high-pressure operando spectroscopy methods to well-defined Cu and Cu0.7Zn0.3 nanoparticles supported on ZnO/Al2O3, γ-Al2O3 and SiO2 to correlate their structure, composition and catalytic performance. We obtain similar activity and methanol selectivity for Cu/ZnO/Al2O3 and CuZn/SiO2, but the methanol yield decreases with time on stream for the latter sample. Operando X-ray absorption spectroscopy data reveal the formation of reduced Zn species coexisting with ZnO on CuZn/SiO2. Near-ambient pressure X-ray photoelectron spectroscopy shows Zn surface segregation and the formation of a ZnO-rich shell on CuZn/SiO2. In this work we demonstrate the beneficial effect of Zn, even in diluted form, and highlight the influence of the oxide support and the Cu-Zn interface in the reactivity.

SELECTION OF CITATIONS
SEARCH DETAIL