Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Dev Orig Health Dis ; 14(4): 501-507, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37431265

ABSTRACT

Fetal restriction (FR) alters insulin sensitivity, but it is unknown how the metabolic profile associated with restriction affects development of the dopamine (DA) system and DA-related behaviors. The Netrin-1/DCC guidance cue system participates in maturation of the mesocorticolimbic DA circuitry. Therefore, our objective was to identify if FR modifies Netrin-1/DCC receptor protein expression in the prefrontal cortex (PFC) at birth and mRNA in adulthood in rodent males. We used cultured HEK293 cells to assess if levels of miR-218, microRNA regulator of DCC, are sensitive to insulin. To assess this, pregnant dams were subjected to a 50% FR diet from gestational day 10 until birth. Medial PFC (mPFC) DCC/Netrin-1 protein expression was measured at P0 at baseline and Dcc/Netrin-1 mRNA levels were quantified in adults 15 min after a saline/insulin injection. miR-218 levels in HEK-293 cells were measured in response to insulin exposure. At P0, Netrin-1 levels are downregulated in FR animals in comparison to controls. In adult rodents, insulin administration results in an increase in Dcc mRNA levels in control but not FR rats. In HEK293 cells, there is a positive correlation between insulin concentration and miR-218 levels. Since miR-218 is a Dcc gene expression regulator and our in vitro results show that insulin regulates miR-218 levels, we suggest that FR-induced changes in insulin sensitivity could be affecting Dcc expression via miR-218, impacting DA system maturation and organization. As fetal adversity is linked to nonadaptive behaviors later in life, this may contribute to early identification of vulnerability to chronic diseases associated with fetal adversity.


Subject(s)
Insulin Resistance , MicroRNAs , Humans , Male , Pregnancy , Female , Rats , Animals , Netrin-1/genetics , Netrin-1/metabolism , HEK293 Cells , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Insulin/metabolism , Rodentia/genetics , Rodentia/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Cues , Prefrontal Cortex/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/metabolism , DCC Receptor/metabolism
2.
Nat Commun ; 14(1): 4035, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37419977

ABSTRACT

Initiating drug use during adolescence increases the risk of developing addiction or other psychopathologies later in life, with long-term outcomes varying according to sex and exact timing of use. The cellular and molecular underpinnings explaining this differential sensitivity to detrimental drug effects remain unexplained. The Netrin-1/DCC guidance cue system segregates cortical and limbic dopamine pathways in adolescence. Here we show that amphetamine, by dysregulating Netrin-1/DCC signaling, triggers ectopic growth of mesolimbic dopamine axons to the prefrontal cortex, only in early-adolescent male mice, underlying a male-specific vulnerability to enduring cognitive deficits. In adolescent females, compensatory changes in Netrin-1 protect against the deleterious consequences of amphetamine on dopamine connectivity and cognitive outcomes. Netrin-1/DCC signaling functions as a molecular switch which can be differentially regulated by the same drug experience as function of an individual's sex and adolescent age, and lead to divergent long-term outcomes associated with vulnerable or resilient phenotypes.


Subject(s)
Amphetamine , Dopamine , Female , Mice , Male , Animals , Amphetamine/pharmacology , Dopamine/metabolism , Netrin-1/metabolism , DCC Receptor/genetics , DCC Receptor/metabolism , Axons/metabolism
3.
Cell Host Microbe ; 30(11): 1615-1629.e5, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36323315

ABSTRACT

Gut-microbiota membership is associated with diverse neuropsychological outcomes, including substance use disorders (SUDs). Here, we use mice colonized with Citrobacter rodentium or the human γ-Proteobacteria commensal Escherichia coli HS as a model to examine the mechanistic interactions between gut microbes and host responses to cocaine. We find that cocaine exposure increases intestinal norepinephrine levels that are sensed through the bacterial adrenergic receptor QseC to promote intestinal colonization of γ-Proteobacteria. Colonized mice show enhanced host cocaine-induced behaviors. The neuroactive metabolite glycine, a bacterial nitrogen source, is depleted in the gut and cerebrospinal fluid of colonized mice. Systemic glycine repletion reversed, and γ-Proteobacteria mutated for glycine uptake did not alter the host response to cocaine. γ-Proteobacteria modulated glycine levels are linked to cocaine-induced transcriptional plasticity in the nucleus accumbens through glutamatergic transmission. The mechanism outline here could potentially be exploited to modulate reward-related brain circuits that contribute to SUDs.


Subject(s)
Cocaine , Gastrointestinal Microbiome , Mice , Humans , Animals , Proteobacteria , Citrobacter rodentium , Bacteria , Escherichia coli , Glycine
4.
Curr Opin Microbiol ; 63: 59-65, 2021 10.
Article in English | MEDLINE | ID: mdl-34217915

ABSTRACT

The gut-brain axis plays a critical role in the maintenance of the gastrointestinal tract homeostasis. Several enteric pathogens have developed strategies to sense neurochemical molecules to regulate their virulence in the gut. Additionally, there is growing evidence that gut dysbiosis can strongly affect host brain responses. Here we review different mechanisms that have been proposed to mediate gut-brain axis communication using Citrobacter rodentium, a natural murine enteric pathogen and one of the most widely used small animal models for studying host-microbe interactions. We highlight studies that have identified-specific pathways used by C. rodentium to sense host neurochemicals during colonization as well as behavioral responses and brain pathologies affected by pathogen colonization of the gut.


Subject(s)
Citrobacter rodentium , Enterobacteriaceae Infections , Animals , Brain , Dysbiosis , Mice , Virulence
5.
Biol Psychiatry ; 89(9): 911-919, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33384174

ABSTRACT

BACKGROUND: Adolescence is a period of increased vulnerability to psychiatric disorders, including depression. Discovering novel biomarkers to identify individuals who are at high risk is very much needed. Our previous work shows that the microRNA miR-218 mediates susceptibility to stress and depression in adulthood by targeting the netrin-1 guidance cue receptor gene Dcc in the medial prefrontal cortex (mPFC). METHODS: Here, we investigated whether miR-218 regulates Dcc expression in adolescence and could serve as an early predictor of lifetime stress vulnerability in male mice. RESULTS: miR-218 expression in the mPFC increases from early adolescence to adulthood and correlates negatively with Dcc levels. In blood, postnatal miR-218 expression parallels changes occurring in the mPFC. Notably, circulating miR-218 levels in adolescence associate with vulnerability to social defeat stress in adulthood, with high levels associated with social avoidance severity. Indeed, downregulation of miR-218 in the mPFC in adolescence promotes resilience to stress in adulthood. CONCLUSIONS: miR-218 expression in adolescence may serve both as a marker of risk and as a target for early interventions.


Subject(s)
MicroRNAs , Prefrontal Cortex , Animals , Down-Regulation , Male , Mice , MicroRNAs/genetics , Social Behavior , Stress, Psychological/genetics
6.
Cell ; 183(3): 650-665.e15, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33031742

ABSTRACT

Endocannabinoids are host-derived lipid hormones that fundamentally impact gastrointestinal (GI) biology. The use of cannabis and other exocannabinoids as anecdotal treatments for various GI disorders inspired the search for mechanisms by which these compounds mediate their effects, which led to the discovery of the mammalian endocannabinoid system. Dysregulated endocannabinoid signaling was linked to inflammation and the gut microbiota. However, the effects of endocannabinoids on host susceptibility to infection has not been explored. Here, we show that mice with elevated levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG) are protected from enteric infection by Enterobacteriaceae pathogens. 2-AG directly modulates pathogen function by inhibiting virulence programs essential for successful infection. Furthermore, 2-AG antagonizes the bacterial receptor QseC, a histidine kinase encoded within the core Enterobacteriaceae genome that promotes the activation of pathogen-associated type three secretion systems. Taken together, our findings establish that endocannabinoids are directly sensed by bacteria and can modulate bacterial function.


Subject(s)
Endocannabinoids/metabolism , Enterobacteriaceae/pathogenicity , Animals , Arachidonic Acids/chemistry , Arachidonic Acids/metabolism , Bacterial Adhesion , Bacterial Proteins/metabolism , Bacterial Secretion Systems/metabolism , Citrobacter rodentium/pathogenicity , Colon/microbiology , Colon/pathology , Endocannabinoids/chemistry , Enterobacteriaceae Infections/microbiology , Female , Gastrointestinal Microbiome , Glycerides/chemistry , Glycerides/metabolism , HeLa Cells , Host-Pathogen Interactions , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Monoacylglycerol Lipases/metabolism , Salmonella/pathogenicity , Virulence
7.
Front Cell Dev Biol ; 8: 487, 2020.
Article in English | MEDLINE | ID: mdl-32714924

ABSTRACT

The fine arrangement of neuronal connectivity during development involves the coordinated action of guidance cues and their receptors. In adolescence, the dopamine circuitry is still developing, with mesolimbic dopamine axons undergoing target-recognition events in the nucleus accumbens (NAcc), while mesocortical projections continue to grow toward the prefrontal cortex (PFC) until adulthood. This segregation of mesolimbic versus mesocortical dopamine pathways is mediated by the guidance cue receptor DCC, which signals dopamine axons intended to innervate the NAcc to recognize this region as their final target. Whether DCC-dependent mesolimbic dopamine axon targeting in adolescence requires the action of its ligand, Netrin-1, is unknown. Here we combined shRNA strategies, quantitative analysis of pre- and post-synaptic markers of neuronal connectivity, and pharmacological manipulations to address this question. Similar to DCC levels in the ventral tegmental area, Netrin-1 expression in the NAcc is dynamic across postnatal life, transitioning from high to low expression across adolescence. Silencing Netrin-1 in the NAcc in adolescence results in an increase in the expanse of the dopamine input to the PFC in adulthood, with a corresponding increase in the number of presynaptic dopamine sites. This manipulation also results in altered dendritic spine density and morphology of medium spiny neurons in the NAcc in adulthood and in reduced sensitivity to the behavioral activating effects of the stimulant drug of abuse, amphetamine. These cellular and behavioral effects mirror those induced by Dcc haploinsufficiency within dopamine neurons in adolescence. Dopamine targeting in adolescence requires the complementary interaction between DCC receptors in mesolimbic dopamine axons and Netrin-1 in the NAcc. Factors regulating either DCC or Netrin-1 in adolescence can disrupt mesocorticolimbic dopamine development, rendering vulnerability or protection to phenotypes associated with psychiatric disorders.

8.
Cell Host Microbe ; 28(1): 41-53.e8, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32521224

ABSTRACT

The gut-brain axis is crucial to microbial-host interactions. The neurotransmitter serotonin is primarily synthesized in the gastrointestinal (GI) tract, where it is secreted into the lumen and subsequently removed by the serotonin transporter, SERT. Here, we show that serotonin decreases virulence gene expression by enterohemorrhagic E. coli (EHEC) and Citrobacter rodentium, a murine model for EHEC. The membrane-bound histidine sensor kinase, CpxA, is a bacterial serotonin receptor. Serotonin induces dephosphorylation of CpxA, which inactivates the transcriptional factor CpxR controlling expression of virulence genes, notably those within the locus of enterocyte effacement (LEE). Increasing intestinal serotonin by genetically or pharmacologically inhibiting SERT decreases LEE expression and reduces C. rodentium loads. Conversely, inhibiting serotonin synthesis increases pathogenesis and decreases host survival. As other enteric bacteria contain CpxA, this signal exploitation may be engaged by other pathogens. Additionally, repurposing serotonin agonists to inhibit CpxA may represent a potential therapeutic intervention for enteric bacteria.


Subject(s)
Bacterial Proteins/metabolism , Citrobacter rodentium/pathogenicity , Enterohemorrhagic Escherichia coli/pathogenicity , Protein Kinases/metabolism , Serotonin/physiology , Animals , Bacterial Proteins/genetics , Citrobacter rodentium/genetics , Disease Models, Animal , Enterobacteriaceae Infections/microbiology , Enterohemorrhagic Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Female , Gastrointestinal Tract/microbiology , Gene Expression Regulation, Bacterial , HeLa Cells , Host-Pathogen Interactions/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Kinases/genetics , Serotonin Antagonists , Transcriptome , Virulence Factors/genetics , Virulence Factors/metabolism
9.
ACS Cent Sci ; 6(2): 197-206, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32123737

ABSTRACT

Escherichia coli is a common inhabitant of the human microbiota and a beacon model organism in biology. However, an understanding of its signaling systems that regulate population-level phenotypes known as quorum sensing remain incomplete. Here, we define the structure and biosynthesis of autoinducer-3 (AI-3), a metabolite of previously unknown structure involved in the pathogenesis of enterohemorrhagic E. coli (EHEC). We demonstrate that novel AI-3 analogs are derived from threonine dehydrogenase (Tdh) products and "abortive" tRNA synthetase reactions, and they are distributed across a variety of Gram-negative and Gram-positive bacterial pathogens. In addition to regulating virulence genes in EHEC, we show that the metabolites exert diverse immunological effects on primary human tissues. The discovery of AI-3 metabolites and their biochemical origins now provides a molecular foundation for investigating the diverse biological roles of these elusive yet widely distributed bacterial signaling molecules.

10.
Neurosci Bull ; 36(6): 611-624, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32078732

ABSTRACT

In adult animals, it is well established that stress has a proactive effect on psychostimulant responses. However, whether only a short period of stress during adolescence can also affect cocaine responses later in life and what mechanisms are involved are unknown. Here, we showed that 5 days of social isolation during rat adolescence had a long-term impact on anxiety-like behaviors, cocaine-induced conditioned place preference, and the expression of sensitization during adulthood. At the molecular level, social isolation decreased the activity of the Wnt/ß-catenin pathway in the prefrontal cortex (PFC). Furthermore, after the expression of cocaine sensitization, isolated rats showed an increase in this pathway in the nucleus accumbens. Together, these findings suggest that, adolescent social isolation by altering the Wnt/ß-catenin pathway in the developing PFC might increase the cocaine responses during adulthood, introducing this pathway as a novel neuroadaptation in the cortical-accumbens connection that may mediate a stress-induced increase in vulnerability to drugs.


Subject(s)
Anxiety , Cocaine , Prefrontal Cortex/drug effects , Social Isolation , Wnt Signaling Pathway , Animals , Male , Nucleus Accumbens , Rats , Rats, Wistar
11.
Addict Biol ; 25(4): e12791, 2020 07.
Article in English | MEDLINE | ID: mdl-31192517

ABSTRACT

The guidance cue receptor DCC controls mesocortical dopamine development in adolescence. Repeated exposure to an amphetamine regimen of 4 mg/kg during early adolescence induces, in male mice, downregulation of DCC expression in dopamine neurons by recruiting the Dcc microRNA repressor, microRNA-218 (miR-218). This adolescent amphetamine regimen also disrupts mesocortical dopamine connectivity and behavioral control in adulthood. Whether low doses of amphetamine in adolescence induce similar molecular and developmental effects needs to be established. Here, we quantified plasma amphetamine concentrations in early adolescent mice following a 4 or 0.5 mg/kg dose and found peak levels corresponding to those seen in humans following recreational and therapeutic settings, respectively. In contrast to the high doses, the low amphetamine regimen does not alter Dcc mRNA or miR-218 expression; instead, it upregulates DCC protein levels. Furthermore, high, but not low, drug doses downregulate the expression of the DCC receptor ligand, Netrin-1, in the nucleus accumbens and prefrontal cortex. Exposure to the low-dose regimen did not alter the expanse of mesocortical dopamine axons or their number/density of presynaptic sites in adulthood. Strikingly, adolescent exposure to the low-dose drug regimen does not impair behavioral inhibition in adulthood; instead, it induces an overall increase in performance in a go/no-go task. These results show that developmental consequences of exposure to therapeutic- versus abused-like doses of amphetamine in adolescence have dissimilar molecular signatures and opposite behavioral effects. These findings have important clinical relevance since amphetamines are widely used for therapeutic purposes in youth.


Subject(s)
Amphetamine/pharmacology , Central Nervous System Stimulants/pharmacology , DCC Receptor/drug effects , Dopaminergic Neurons/drug effects , MicroRNAs/drug effects , Amphetamine/administration & dosage , Amphetamine-Related Disorders , Animals , Behavior, Animal/drug effects , Central Nervous System Stimulants/administration & dosage , DCC Receptor/genetics , DCC Receptor/metabolism , Dose-Response Relationship, Drug , Inhibition, Psychological , Male , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Netrin-1/drug effects , Netrin-1/metabolism , Neural Pathways , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , RNA, Messenger/drug effects , RNA, Messenger/metabolism
12.
Mol Psychiatry ; 25(5): 951-964, 2020 05.
Article in English | MEDLINE | ID: mdl-30980043

ABSTRACT

Low miR-218 expression in the medial prefrontal cortex (mPFC) is a consistent trait of depression. Here we assessed whether miR-218 in the mPFC confers resilience or susceptibility to depression-like behaviors in adult mice, using the chronic social defeat stress (CSDS) model of depression. We also investigated whether stress-induced variations of miR-218 expression in the mPFC can be detected in blood. We find that downregulation of miR-218 in the mPFC increases susceptibility to a single session of social defeat, whereas overexpression of miR-218 selectively in mPFC pyramidal neurons promotes resilience to CSDS and prevents stress-induced morphological alterations to those neurons. After CSDS, susceptible mice have low levels of miR-218 in blood, as compared with control or resilient groups. We show further that upregulation and downregulation of miR-218 levels specifically in the mPFC correlate with miR-218 expression in blood. Our results suggest that miR-218 in the adult mPFC might function as a molecular switch that determines susceptibility vs. resilience to chronic stress, and that stress-induced variations in mPFC levels of miR-218 could be detected in blood. We propose that blood expression of miR-218 might serve as potential readout of vulnerability to stress and as a proxy of mPFC function.


Subject(s)
MicroRNAs/biosynthesis , Social Defeat , Stress, Psychological/genetics , Animals , Biomarkers/blood , Biomarkers/metabolism , Down-Regulation , Male , Mice , MicroRNAs/blood , Prefrontal Cortex/metabolism , Stress, Psychological/blood , Up-Regulation
13.
Front Psychol ; 9: 2639, 2018.
Article in English | MEDLINE | ID: mdl-30622500

ABSTRACT

Drug addiction is a chronic neuropsychiatric disorder that escalates from an initial exposure to drugs of abuse, such as cocaine, cannabis, or heroin, to compulsive drug-seeking and intake, reduced ability to inhibit craving-induced behaviors, and repeated cycles of abstinence and relapse. It is well-known that chronic changes in the brain's reward system play an important role in the neurobiology of addiction. Notably, environmental factors such as acute or chronic stress affect this system, and increase the risk for drug consumption and relapse. Indeed, the HPA axis, the autonomic nervous system, and the extended amygdala, among other brain stress systems, interact with the brain's reward circuit involved in addictive behaviors. There has been a growing interest in studying the molecular, cellular, and behavioral mechanisms of stress and addiction in Latin-America over the last decade. Nonetheless, these contributions may not be as strongly acknowledged by the broad scientific audience as studies coming from developed countries. In this review, we compile for the first time a series of studies conducted by Latin American-based neuroscientists, who have devoted their careers to studying the interaction between stress and addiction, from a neurobiological and clinical perspective. Specific contributions about this interaction include the study of CRF receptors in the lateral septum, investigations on the neural mechanisms of cross-sensitization for psychostimulants and ethanol, the identification of the Wnt/ß-catenin pathway as a critical neural substrate for stress and addiction, and the emergence of the cannabinoid system as a promising therapeutic target. We highlight animal and human studies, including for instance, reports coming from Latin American laboratories on single nucleotide polymorphisms in stress-related genes and potential biomarkers of vulnerability to addiction, that aim to bridge the knowledge from basic science to clinical research.

14.
Neuropsychopharmacology ; 43(4): 900-911, 2018 03.
Article in English | MEDLINE | ID: mdl-29154364

ABSTRACT

The development of the dopamine input to the medial prefrontal cortex occurs during adolescence and is a process that is vulnerable to disruption by stimulant drugs such as amphetamine. We have previously linked the amphetamine-induced disruption of dopamine connectivity and prefrontal cortex maturation during adolescence to the downregulation of the Netrin-1 receptor, DCC, in dopamine neurons. However, how DCC expression in dopamine neurons is itself regulated is completely unknown. MicroRNA (miRNA) regulation of mRNA translation and stability is a prominent mechanism linking environmental events to changes in protein expression. Here, using male mice, we show that miR-218 is expressed in dopamine neurons and is a repressor of DCC. Whereas Dcc mRNA levels increase from early adolescence to adulthood, miR-218 exhibits the exact opposite switch, most likely maintaining postnatal Dcc expression. This dynamic regulation appears to be selective to Dcc since the expression of Robo 1, the other guidance cue receptor target of miR-218, does not vary with age. Amphetamine in adolescence, but not in adulthood, increases miR-218 in the VTA and this event is required for drug-induced downregulation of Dcc mRNA and protein expression. This effect seems to be specific to Dcc because amphetamine does not alter Robo1. Furthermore, the upregulation of miR-218 by amphetamine requires dopamine D2 receptor activation. These findings identify miR-218 as regulator of DCC in the VTA both in normal development and after drug exposure in adolescence.


Subject(s)
Amphetamine/pharmacology , Central Nervous System Stimulants/pharmacology , DCC Receptor/biosynthesis , MicroRNAs/biosynthesis , Ventral Tegmental Area/metabolism , Age Factors , Animals , DCC Receptor/genetics , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Gene Expression , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Ventral Tegmental Area/drug effects
15.
Biol Psychiatry ; 83(2): 181-192, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28720317

ABSTRACT

BACKGROUND: Dopaminergic input to the prefrontal cortex (PFC) increases throughout adolescence and, by establishing precisely localized synapses, calibrates cognitive function. However, why and how mesocortical dopamine axon density increases across adolescence remains unknown. METHODS: We used a developmental application of axon-initiated recombination to label and track the growth of dopamine axons across adolescence in mice. We then paired this recombination with cell-specific knockdown of the netrin-1 receptor DCC to determine its role in adolescent dopamine axon growth. We then assessed how altering adolescent PFC dopamine axon growth changes the structural and functional development of the PFC by quantifying pyramidal neuron morphology and cognitive performance. RESULTS: We show, for the first time, that dopamine axons continue to grow from the striatum to the PFC during adolescence. Importantly, we discover that DCC, a guidance cue receptor, controls the extent of this protracted growth by determining where and when dopamine axons recognize their final target. When DCC-dependent adolescent targeting events are disrupted, dopamine axons continue to grow ectopically from the nucleus accumbens to the PFC and profoundly change PFC structural and functional development. This leads to alterations in cognitive processes known to be impaired across psychiatric conditions. CONCLUSIONS: The prolonged growth of dopamine axons represents an extraordinary period for experience to influence their adolescent trajectory and predispose to or protect against psychopathology. DCC receptor signaling in dopamine neurons is a molecular link where genetic and environmental factors may interact in adolescence to influence the development and function of the prefrontal cortex.


Subject(s)
Axons/metabolism , DCC Receptor/metabolism , Dopaminergic Neurons/metabolism , Nucleus Accumbens/metabolism , Prefrontal Cortex/metabolism , Animals , Attention/physiology , Behavior, Animal/physiology , DCC Receptor/genetics , Gene Knockdown Techniques , Inhibition, Psychological , Male , Maze Learning/physiology , Mice , Nucleus Accumbens/growth & development , Prefrontal Cortex/growth & development , Set, Psychology
16.
Addict Biol ; 22(4): 933-945, 2017 Jul.
Article in English | MEDLINE | ID: mdl-26910786

ABSTRACT

Behavioral sensitization is a progressive and enduring enhancement of the motor stimulant effects elicited by repeated administration of drugs of abuse. It can be divided into two distinct temporal and anatomical domains, termed initiation and expression, which are characterized by specific molecular and neurochemical changes. This study examines the role of the Wnt canonical pathway mediating the induction of cocaine sensitization. We found that ß-catenin levels in the prefrontal cortex (PFC), amygdala (Amyg) and dorsal striatum (CPu) are decreased in animals that show sensitization. Accordingly, GSK3ß activity levels are increased in the same areas. Moreover, ß-catenin levels in nuclear fraction, mRNA expression of Axin2 and Wnt7b are decreased in the PFC of sensitized animals. Then, in order to demonstrate that changes in the PFC are crucial for initiation of sensitization, we either rescue ß-catenin levels with a systemic treatment of a GSK3ß inhibitor (Lithium Chloride) or inhibit Wnt/ß-catenin pathway with an intracerebral infusion of Sulindac before each cocaine injection. As expected, rescuing ß-catenin levels in the PFC as well as CPu and Amyg blocks cocaine-induced sensitization, while decreasing ß-catenin levels exclusively in the PFC exacerbates it. Therefore, our results demonstrate a new role for the Wnt/ß-catenin pathway as a required neuroadaptation in inducing behavioral sensitization.


Subject(s)
Brain/drug effects , Brain/metabolism , Cocaine/pharmacology , Prefrontal Cortex/metabolism , Wnt Signaling Pathway , Animals , Cocaine/metabolism , Dopamine Uptake Inhibitors/metabolism , Dopamine Uptake Inhibitors/pharmacology , Male , Models, Animal , Rats , Rats, Wistar
17.
J Neurochem ; 140(1): 114-125, 2017 01.
Article in English | MEDLINE | ID: mdl-27718509

ABSTRACT

Cocaine addiction is a chronic relapsing disorder characterized by the loss of control over drug-seeking and taking, and continued drug use regardless of adverse consequences. Despite years of research, effective treatments for psycho-stimulant addiction have not been identified. Persistent vulnerability to relapse arises from a number of long-lasting adaptations in the reward circuitry that mediate the enduring response to the drug. Recently, we reported that the activity of the canonical or Wnt/ß-catenin pathway in the prefrontal cortex (PFC) is very important in the early stages of cocaine-induced neuroadaptations. In the present work, our main goal was to elucidate the relevance of this pathway in cocaine-induced long-term neuroadaptations that may underlie relapse. We found that a cocaine challenge, after a period of abstinence, induced an increase in the activity of the pathway which is revealed as an increase in the total and nuclear levels of ß-catenin (final effector of the pathway) in the nucleus accumbens (NAcc), together with a decrease in the activity of glycogen synthase kinase 3ß (GSK3ß). Moreover, we found that the pharmacological modulation of the activity of the pathway has long-term effects on the cocaine-induced neuroplasticity at behavioral and molecular levels. All the results imply that changes in the Wnt/ß-catenin pathway effectors are long-term neuroadaptations necessary for the behavioral response to cocaine. Even though more research is needed, the present results introduce the Wnt canonical pathway as a possible target to manage cocaine long-term neuroadaptations.


Subject(s)
Cocaine-Related Disorders/metabolism , Cocaine/administration & dosage , Neuronal Plasticity/physiology , Nucleus Accumbens/metabolism , Wnt Signaling Pathway/physiology , beta Catenin/biosynthesis , Animals , Cocaine-Related Disorders/drug therapy , Drug Delivery Systems , Male , Neuronal Plasticity/drug effects , Nucleus Accumbens/drug effects , Rats , Rats, Wistar , Wnt Signaling Pathway/drug effects
18.
Biol Psychiatry ; 81(4): 306-315, 2017 02 15.
Article in English | MEDLINE | ID: mdl-27773352

ABSTRACT

BACKGROUD: Variations in the expression of the Netrin-1 guidance cue receptor DCC (deleted in colorectal cancer) appear to confer resilience or susceptibility to psychopathologies involving prefrontal cortex (PFC) dysfunction. METHODS: With the use of postmortem brain tissue, mouse models of defeat stress, and in vitro analysis, we assessed microRNA (miRNA) regulation of DCC and whether changes in DCC levels in the PFC lead to vulnerability to depression-like behaviors. RESULTS: We identified miR-218 as a posttranscriptional repressor of DCC and detected coexpression of DCC and miR-218 in pyramidal neurons of human and mouse PFC. We found that exaggerated expression of DCC and reduced levels of miR-218 in the PFC are consistent traits of mice susceptible to chronic stress and of major depressive disorder in humans. Remarkably, upregulation of Dcc in mouse PFC pyramidal neurons causes vulnerability to stress-induced social avoidance and anhedonia. CONCLUSIONS: These data are the first demonstration of microRNA regulation of DCC and suggest that, by regulating DCC, miR-218 may be a switch of susceptibility versus resilience to stress-related disorders.


Subject(s)
Depressive Disorder, Major/metabolism , MicroRNAs/metabolism , Prefrontal Cortex/metabolism , Pyramidal Cells/metabolism , Receptors, Cell Surface/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Cell Line, Tumor , DCC Receptor , Depressive Disorder, Major/etiology , Humans , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism , Social Behavior , Stress, Psychological/complications
19.
Neurotoxicol Teratol ; 37: 57-62, 2013.
Article in English | MEDLINE | ID: mdl-23557781

ABSTRACT

The effect of sodium metavanadate (NaVO3) exposure on lipid oxidative damage in the CNS of suckling rats was studied. Using histological markers of cellular injury, we also studied the morphological alterations of neurons and astroglial cells in different regions of neonate rats CNS after NaVO3 exposure. Dams of treated litters were intraperitoneally injected with 3mgNaVO3/kgbody weight/day during 12days starting on post-natal day (PND) 10. On the 21st PND, four pups of each litter were sacrificed by decapitation and six brain areas were removed for lipid peroxidation assay by the thiobarbituric acid (TBA) reaction, the other four were transcardially perfused-fixed and their brains were removed and cut with a cryostat. Brain sections were processed for: NADPHd histochemistry and anti-HSP70, anti-GFAP and anti-S100 immunohistochemistry. The relative optical density of the NADPHd stained layers and of S100 (+) astrocytes and the GFAP (+) astrocyte surface area in Cer and Hc were measured. Although MDA levels, S100 immunostaining and NADPHd activity didn't show differences between experimental and control groups, both astrogliosis and HSP70 activation were detected in Cer, while only the former was detected in Hc of V-exposed pups.


Subject(s)
Astrocytes/drug effects , Brain/drug effects , HSP70 Heat-Shock Proteins/metabolism , Maternal Exposure/adverse effects , Milk , Vanadates/toxicity , Animals , Animals, Newborn , Animals, Suckling , Astrocytes/metabolism , Astrocytes/pathology , Brain/growth & development , Brain/metabolism , Brain/pathology , Female , Image Processing, Computer-Assisted , Immunohistochemistry , Lipid Peroxidation/drug effects , Microscopy, Ultraviolet , Milk/chemistry , Oxidative Stress/drug effects , Rats , Vanadates/pharmacokinetics
20.
Neurotoxicol Teratol ; 33(2): 297-302, 2011.
Article in English | MEDLINE | ID: mdl-21056100

ABSTRACT

In the present work, in vivo ROS formation and the activity of antioxidant enzymes in the hippocampus and the cerebellum of sodium metavanadate (NaVO3) treated rats were studied. Rats were i.p. injected with 3 mg/kg bw/day (V1 group) or with 7.2 mg/kg bw/day of NaVO3 (V2 group) for 5 consecutive days. Results show that after only 5 days of NaVO3 exposure, reactive oxygen species formation and alteration of the oxidative defence system were observed. Vanadium-induced OH production was detected in cerebellum at the high dose. This result was confirmed by in situ ROS histochemical staining. Neither Cat nor Cu-Zn SOD activities showed changes while GSH/GSSG ratio, in both brain areas, was significantly decreased in NaVO3-treated groups. The present work indicates that the NaVO3 dose and the particular brain area constitution would be critical in the cellular and molecular oxidative mechanism of this element.


Subject(s)
Antioxidants/metabolism , Cerebellum/drug effects , Environmental Pollutants/toxicity , Hippocampus/drug effects , Reactive Oxygen Species/metabolism , Vanadates/toxicity , Animals , Catalase/metabolism , Cerebellum/enzymology , Cerebellum/metabolism , Dose-Response Relationship, Drug , Glutathione/metabolism , Hippocampus/enzymology , Hippocampus/metabolism , Injections, Intraperitoneal , Male , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...