Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 14(10): 686, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37852977

ABSTRACT

Ineffective hematopoiesis is a hallmark of myelodysplastic syndromes (MDS). Hematopoietic alterations in MDS patients strictly correlate with microenvironment dysfunctions, eventually affecting also the mesenchymal stromal cell (MSC) compartment. Stromal cells are indeed epigenetically reprogrammed to cooperate with leukemic cells and propagate the disease as "tumor unit"; therefore, changes in MSC epigenetic profile might contribute to the hematopoietic perturbations typical of MDS. Here, we unveil that the histone variant macroH2A1 (mH2A1) regulates the crosstalk between epigenetics and inflammation in MDS-MSCs, potentially affecting their hematopoietic support ability. We show that the mH2A1 splicing isoform mH2A1.1 accumulates in MDS-MSCs, correlating with the expression of the Toll-like receptor 4 (TLR4), an important pro-tumor activator of MSC phenotype associated to a pro-inflammatory behavior. MH2A1.1-TLR4 axis was further investigated in HS-5 stromal cells after ectopic mH2A1.1 overexpression (mH2A1.1-OE). Proteomic data confirmed the activation of a pro-inflammatory signature associated to TLR4 and nuclear factor kappa B (NFkB) activation. Moreover, mH2A1.1-OE proteomic profile identified several upregulated proteins associated to DNA and histones hypermethylation, including S-adenosylhomocysteine hydrolase, a strong inhibitor of DNA methyltransferase and of the methyl donor S-adenosyl-methionine (SAM). HPLC analysis confirmed higher SAM/SAH ratio along with a metabolic reprogramming. Interestingly, an increased LDHA nuclear localization was detected both in mH2A1.1-OE cells and MDS-MSCs, probably depending on MSC inflammatory phenotype. Finally, coculturing healthy mH2A1.1-OE MSCs with CD34+ cells, we found a significant reduction in the number of CD34+ cells, which was reflected in a decreased number of colony forming units (CFU-Cs). These results suggest a key role of mH2A1.1 in driving the crosstalk between epigenetic signaling, inflammation, and cell metabolism networks in MDS-MSCs.


Subject(s)
Mesenchymal Stem Cells , Myelodysplastic Syndromes , Neoplasms , Humans , DNA/metabolism , Epigenesis, Genetic , Histones/metabolism , Inflammation/pathology , Mesenchymal Stem Cells/metabolism , Myelodysplastic Syndromes/pathology , Neoplasms/pathology , Proteomics , Toll-Like Receptor 4/metabolism , Tumor Microenvironment
2.
Respir Physiol Neurobiol ; 307: 103979, 2023 01.
Article in English | MEDLINE | ID: mdl-36243292

ABSTRACT

Ozone (O3) is one of the most harmful urban pollutants, but its biological mechanisms have not been fully elucidated yet. Human bronchial epithelial cells (HBEpC) and human macrophage cells (differentiated human monocytic cell line) were exposed to O3 at the concentration of 240 µg/m3 (120 ppb), corresponding to the European Union alert threshold. Cell viability, reactive oxygen species (ROS) production, and pro-inflammatory cytokines release (IL-8 and TNF-α) were evaluated. Results indicated that O3 exposure increases ROS production in both cell types and enhances cytokines release in macrophages. O3 stimulated IL-8 and TNF-α in HBEpC when the cells were pretreated with Lipopolysaccharide, used to mimic a pre-existing inflammatory condition. Proteomics analysis revealed that, in HBEpC, O3 caused the up-regulation of aldo-keto reductase family 1 member B10, a recognized critical protein in lung carcinogenesis. In conclusion, our results show that 120 ppb O3 can lead to potential damage to human health suggesting the need for a revision of the actual alert levels.


Subject(s)
Ozone , Humans , Ozone/toxicity , Ozone/metabolism , Interleukin-8 , Tumor Necrosis Factor-alpha/metabolism , Reactive Oxygen Species/metabolism , Proteomics , Epithelial Cells/metabolism , Lung/metabolism , Macrophages/metabolism
4.
J Oncol ; 2019: 5879616, 2019.
Article in English | MEDLINE | ID: mdl-31827511

ABSTRACT

The recent introduction of the "precision medicine" concept in oncology pushed cancer research to focus on dynamic measurable biomarkers able to predict responses to novel anticancer therapies in order to improve clinical outcomes. Recently, the involvement of extracellular vesicles (EVs) in cancer pathophysiology has been described, and given their release from all cell types under specific stimuli, EVs have also been proposed as potential biomarkers in cancer. Among the techniques used to study EVs, flow cytometry has a high clinical potential. Here, we have applied a recently developed and simplified flow cytometry method for circulating EV enumeration, subtyping, and isolation from a large cohort of metastatic and locally advanced nonhaematological cancer patients (N = 106); samples from gender- and age-matched healthy volunteers were also analysed. A large spectrum of cancer-related markers was used to analyse differences in terms of peripheral blood circulating EV phenotypes between patients and healthy volunteers, as well as their correlation to clinical outcomes. Finally, EVs from patients and controls were isolated by fluorescence-activated cell sorting, and their protein cargoes were analysed by proteomics. Results demonstrated that EV counts were significantly higher in cancer patients than in healthy volunteers, as previously reported. More interestingly, results also demonstrated that cancer patients presented higher concentrations of circulating CD31+ endothelial-derived and tumour cancer stem cell-derived CD133 + CD326- EVs, when compared to healthy volunteers. Furthermore, higher levels of CD133 + CD326- EVs showed a significant correlation with a poor overall survival. Additionally, proteomics analysis of EV cargoes demonstrated disparities in terms of protein content and function between circulating EVs in cancer patients and healthy controls. Overall, our data strongly suggest that blood circulating cancer stem cell-derived EVs may have a role as a diagnostic and prognostic biomarker in cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...