Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Arthritis Rheumatol ; 74(12): 1916-1927, 2022 12.
Article in English | MEDLINE | ID: mdl-35854416

ABSTRACT

OBJECTIVE: This study was undertaken to understand the mechanistic basis of response to anti-tumor necrosis factor (anti-TNF) therapies and to determine whether transcriptomic changes in the synovium are reflected in peripheral protein markers. METHODS: Synovial tissue from 46 rheumatoid arthritis (RA) patients was profiled with RNA sequencing before and 12 weeks after treatment with anti-TNF therapies. Pathway and gene signature analyses were performed on RNA expression profiles of synovial biopsies to identify mechanisms that could discriminate among patients with a good response, a moderate response, or no response, according to the American College of Rheumatology (ACR)/EULAR response criteria. Serum proteins encoded by synovial genes that were differentially expressed between ACR/EULAR response groups were measured in the same patients. RESULTS: Gene signatures predicted which patients would have good responses, and pathway analysis identified elevated immune pathways, including chemokine signaling, Th1/Th2 cell differentiation, and Toll-like receptor signaling, uniquely in good responders. These inflammatory pathways were correspondingly down-modulated by anti-TNF therapy only in good responders. Based on cell signature analysis, lymphocyte, myeloid, and fibroblast cell populations were elevated in good responders relative to nonresponders, consistent with the increased inflammatory pathways. Cell signatures that decreased following anti-TNF treatment were predominately associated with lymphocytes, and fewer were associated with myeloid and fibroblast populations. Following anti-TNF treatment, and only in good responders, several peripheral inflammatory proteins decreased in a manner that was consistent with corresponding synovial gene changes. CONCLUSION: Collectively, these data suggest that RA patients with robust responses to anti-TNF therapies are characterized at baseline by immune pathway activation, which decreases following anti-TNF treatment. Understanding mechanisms that define patient responsiveness to anti-TNF treatment may assist in development of predictive markers of patient response and earlier treatment options.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Humans , Antirheumatic Agents/therapeutic use , Antirheumatic Agents/metabolism , Tumor Necrosis Factor Inhibitors/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Synovial Membrane/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
J Transl Autoimmun ; 4: 100079, 2021.
Article in English | MEDLINE | ID: mdl-33490940

ABSTRACT

Nuclear factor (erythroid-derived 2) like 2 (NRF2) is a nuclear transcription factor activated in response to oxidative stress that induces a gene program that dampens inflammation and can limit cell damage that perpetuates the inflammatory response. We have identified A-1396076, a potent and selective NRF2 activator with demonstrated KEAP1 binding and modulation of cellular NRF2 mediated effects. In vivo administration of A-1396076 inhibits inflammation across several rodent models of autoimmunity when administered at or before the time of antigen challenge while also inducing NRF2 modulated gene transcription in the liver of the animals. It was not effective when administered after the time of antigen challenge or in a T cell independent model of arthritis induced by passive transfer of anti-collagen antibodies. A-1396076 inhibited antigen dependent T cell activation as measured by IFN-γ production in an ex vivo re-stimulation assay and following anti-CD3 challenge of MOG-sensitized mice. A-1396076 reduced costimulatory molecule expression on dendritic cells in the lungs of OVA LPS challenged mice suggesting that the mechanism of T cell inhibition was mediated at least partially by interfering with antigen presentation. These data suggest that NRF2 activation may be an effective strategy to dampen inflammation for treatment of autoimmune disease.

3.
Inflamm Bowel Dis ; 26(10): 1498-1508, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32840322

ABSTRACT

BACKGROUND: Currently, 2 coprimary end points are used by health authorities to determine the effectiveness of therapeutic interventions in patients with Crohn's disease (CD): symptomatic remission (patient-reported outcome assessment) and endoscopic remission (ileocolonoscopy). However, there is lack of accepted biomarkers to facilitate regulatory decision-making in the development of novel therapeutics for the treatment of CD. METHODS: With support from the Helmsley Charitable Trust, Critical Path Institute formed the Crohn's Disease Biomarkers preconsortium (CDBpC) with members from the pharmaceutical industry, academia, and nonprofit organizations to evaluate the CD biomarker landscape. Biomarkers were evaluated based on biological relevance, availability of biomarker assays, and clinical validation data. RESULTS: The CDBpC identified the most critical need as pharmacodynamic/response biomarkers to monitor disease activity in response to therapeutic intervention. Fecal calprotectin (FC) and serum C-reactive protein (CRP) were identified as biomarkers ready for the regulatory qualification process. A number of exploratory biomarkers and potential panels of these biomarkers was also identified for additional development. Given the different factors involved in CD and disease progression, a combination of biomarkers, including inflammatory, tissue injury, genetic, and microbiome-associated biomarkers, will likely have the most utility. CONCLUSIONS: The primary focus of the Inflammatory Bowel Disease Regulatory Science Consortium will be development of exploratory biomarkers and the qualification of FC and CRP for IBD. The Inflammatory Bowel Disease Regulatory Science Consortium, focused on tools to support IBD drug development, will operate in the precompetitive space to share data, biological samples for biomarker testing, and assay information for novel biomarkers.


Subject(s)
C-Reactive Protein/analysis , Clinical Decision-Making/methods , Crohn Disease/diagnosis , Drug Monitoring/methods , Leukocyte L1 Antigen Complex/analysis , Biomarkers/analysis , Consensus , Crohn Disease/metabolism , Crohn Disease/therapy , Drug Discovery , Feces/chemistry , Humans , Reproducibility of Results , Severity of Illness Index
4.
J Extracell Vesicles ; 8(1): 1684425, 2019.
Article in English | MEDLINE | ID: mdl-31741724

ABSTRACT

Extracellular vesicles (EVs) have great potential as a source for clinically relevant biomarkers since they can be readily isolated from biofluids and carry microRNA (miRNA), mRNA, and proteins that can reflect disease status. However, the biological and technical variability of EV content is unknown making comparisons between healthy subjects and patients difficult to interpret. In this study, we sought to establish a laboratory and bioinformatics analysis pipeline to analyse the small RNA content within EVs from patient serum that could serve as biomarkers and to assess the biological and technical variability of EV RNA content in healthy individuals. We sequenced EV small RNA from multiple individuals (biological replicates) and sequenced multiple replicates per individual (technical replicates) using the Illumina Truseq protocol. We observed that the replicates of samples clustered by subject indicating that the biological variability (~95%) was greater than the technical variability (~0.50%). We observed that ~30% of the sequencing reads were miRNAs. We evaluated the technical parameters of sequencing by spiking the EV RNA preparation with a mix of synthetic small RNA and demonstrated a disconnect between input concentration of the spike-in RNA and sequencing read frequencies indicating that bias was introduced during library preparation. To determine whether there are differences between library preparation platforms, we compared the Truseq with the Nextflex protocol that had been designed to reduce bias in library preparation. While both methods were technically robust, the Nextflex protocol reduced the bias and exhibited a linear range across input concentrations of the synthetic spike-ins. Altogether, our results indicate that technical variability is much smaller than biological variability supporting the use of EV small RNAs as potential biomarkers. Our findings also indicate that the choice of library preparation method leads to artificial differences in the datasets generated invalidating the comparability of sequencing data across library preparation platforms.

5.
J Pharmacol Exp Ther ; 364(3): 474-484, 2018 03.
Article in English | MEDLINE | ID: mdl-29311111

ABSTRACT

Despite the efficacy of biologics for treatment of rheumatoid arthritis (RA), many patients show inadequate responses and likely require neutralization of multiple mediators. Neutralization of both interleukin (IL)-1ß and IL-17A with monoclonal antibodies showed greater efficacy than either agent alone in a mouse arthritis model with cooperative inhibition of key inflammatory factors, IL-6, granulocyte colony-stimulating factor (G-CSF), and CXC chemokine ligand (CXCL)1. Given the potential clinical benefit in RA, we generated a human dual variable domain antibody Ig, ABBV-615, capable of simultaneous binding and neutralization of IL-1ß and IL-17A. ABBV-615 was characterized and evaluated in cynomolgus monkeys for pharmacokinetics and toxicity to enable clinical development. ABBV-615 exhibited affinities (KD) of 12 and 3 pM on human IL-1ß and IL-17A, respectively, and potencies (IC50) of 3 and 58 pM, respectively, as well as excellent drug-like properties. ABBV-615 pharmacokinetics in cynomolgus monkeys was dose proportional from 20 to 100 mg/kg with a mean half-life of 16 days. However, a 13-week repeat-dose toxicity study in cynomolgus monkeys revealed time-dependent spontaneous infections exclusively in skin at all doses tested and not historically seen with single-agent anti-IL-1α/ß or anti-IL-17A. Consistent with reduced resistance to skin infections, IL-1ß- and IL-17A-stimulated human keratinocytes demonstrate cooperative or compensatory production of key antibacterial and inflammatory mediators such as lipocalin-2, G-CSF, CXCL1, IL-8, tumor necrosis factor, and IL-6, which aid in defense against skin bacterial infections. These results illustrate the skin-specific antimicrobial mechanisms of IL-1ß and IL-17A and highlight the importance of understanding unique combinatorial effects of biologic agents.


Subject(s)
Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/therapeutic use , Arthritis, Experimental/drug therapy , Interleukin-17/immunology , Interleukin-1beta/immunology , Skin/drug effects , Skin/microbiology , Animals , Arthritis, Experimental/immunology , Humans , Macaca fascicularis , Male , Mice
6.
Adv Ther ; 34(6): 1364-1381, 2017 06.
Article in English | MEDLINE | ID: mdl-28455782

ABSTRACT

INTRODUCTION: A unique anti-interleukin (IL)-13 monoclonal antibody, RPC4046, was generated on the basis of differential IL-13 receptor (R) blockade as assessed in a murine asthma model; the safety, tolerability, pharmacokinetics, and pharmacodynamics of RPC4046 were evaluated in a first-in-human study. METHODS: Anti-IL-13 antibodies with varying receptor blocking specificity were evaluated in the ovalbumin-induced murine asthma model. A randomized, double-blind, placebo-controlled, dose-escalation first-in-human study (NCT00986037) was conducted with RPC4046 in healthy adults and patients with mild to moderate controlled asthma. RESULTS: In the ovalbumin model, blocking IL-13 binding to both IL-13Rs (IL-13Rα1 and IL-13Rα2) inhibited more asthma phenotypic features and more fully normalized the distinct IL-13 gene transcription associated with asthma compared with blocking IL-13Rα1 alone. In humans, RPC4046 exposure increased dose-dependently; pharmacokinetics were similar in healthy and asthmatic subjects, and blockade of both IL-13Rs uniquely affected IL-13 gene transcription. A minority of participants (28%) had antidrug antibodies, which were transient and appeared not to affect pharmacokinetics. Adverse event profiles were similar in healthy and asthmatic subjects, without dose-related or administration route differences, systemic infusion-related reactions, or asthma symptom worsening. Adverse events were mild to moderate, with none reported as probably related to RPC4046 or leading to discontinuations. Non-serious upper respiratory tract infections were more frequent with RPC4046 versus placebo. CONCLUSION: RPC4046 is a novel anti-IL-13 antibody that blocks IL-13 binding to both receptors and more fully blocks the asthma phenotype. These results support further investigation of RPC4046 for IL-13-related allergic/inflammatory diseases (e.g., asthma and eosinophilic esophagitis). FUNDING: AbbVie Inc. sponsored the studies and contributed to the design and conduct of the studies, data management, data analysis, interpretation of the data, and in the preparation and approval of the manuscript.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Asthma/drug therapy , Interleukin-13/antagonists & inhibitors , Adolescent , Adult , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Dose-Response Relationship, Drug , Double-Blind Method , Female , Humans , Interleukin-13/immunology , Male , Mice , Mice, Inbred BALB C , Middle Aged , Young Adult
7.
Protein Expr Purif ; 75(1): 55-62, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20826216

ABSTRACT

Acidic mammalian chitinase (AMCase) is an enzyme that selectively degrades the biopolymer chitin. Several chitinase enzymes are utilized by mammals to hydrolyze chitin encountered by inhalation and ingestion. AMCase is distinct from other mammalian chitinases as its activity is retained in strongly acidic conditions (pH <2.0). AMCase expression is induced by antigen-induced mouse models of allergic lung inflammation. This protein has also been implicated in the pathogenesis of asthma although its precise role is poorly defined. We describe a novel way to express and purify active murine AMCase. This material retains properties observed in mouse bronchoalveolar lavage (BAL) fluid with regard to pH preference of activity and its inhibition by cyclic peptide inhibitors argifin and argadin. We found that chitinase in BAL from both antigen-challenged and control animals have similar properties in this regard. This strongly supports the notion the same enzyme (AMCase) gives rise to chitinase activity in both challenged and unchallenged animals. We also describe expression of active human AMCase. The methods described in this paper provide a reliable source of recombinant AMCase that can be utilized to expand understanding of AMCase's role in regulating allergic inflammation.


Subject(s)
Chitinases/genetics , Chitinases/metabolism , Cloning, Molecular/methods , Amino Acid Sequence , Animals , Bronchoalveolar Lavage Fluid , COS Cells , Cell Line , Chitinases/isolation & purification , Chlorocebus aethiops , Gene Expression , Humans , Mice , Molecular Sequence Data , Peptides, Cyclic/metabolism , Rats , Rats, Sprague-Dawley , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
8.
J Med Chem ; 51(9): 2722-33, 2008 May 08.
Article in English | MEDLINE | ID: mdl-18412317

ABSTRACT

3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR) inhibitors, more commonly known as statins, represent the gold standard in treating hypercholesterolemia. Although statins are regarded as generally safe, they are known to cause myopathy and, in rare cases, rhabdomyolysis. Statin-dependent effects on plasma lipids are mediated through the inhibition of HMGR in the hepatocyte, whereas evidence suggests that myotoxicity is due to inhibition of HMGR within the myocyte. Thus, an inhibitor with increased selectivity for hepatocytes could potentially result in an improved therapeutic window. Implementation of a strategy that focused on in vitro potency, compound polarity, cell selectivity, and oral absorption, followed by extensive efficacy and safety modeling in guinea pig and rat, resulted in the identification of compound 1b (BMS-644950). Using this discovery pathway, we compared 1b to other marketed statins to demonstrate its outstanding efficacy and safety profile. With the potential to generate an excellent therapeutic window, 1b was advanced into clinical development.


Subject(s)
Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemical synthesis , Pyrimidines/chemical synthesis , Triazoles/chemical synthesis , Administration, Oral , Animals , Biological Availability , Chemical and Drug Induced Liver Injury/etiology , Cholesterol/biosynthesis , Cholesterol/blood , Crystallography, X-Ray , Dogs , Female , Guinea Pigs , Haplorhini , Humans , Hydroxymethylglutaryl CoA Reductases/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/toxicity , In Vitro Techniques , Liver/drug effects , Liver/metabolism , Models, Molecular , Muscle Cells/cytology , Muscle Cells/drug effects , Muscle Cells/metabolism , Pyrimidines/pharmacology , Pyrimidines/toxicity , Rats , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship , Triazoles/pharmacology , Triazoles/toxicity
9.
J Pharmacol Exp Ther ; 324(2): 576-86, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17986646

ABSTRACT

Statins, because of their excellent efficacy and manageable safety profile, represent a key component in the current armamentarium for the treatment of hypercholesterolemia. Nonetheless, myopathy remains a safety concern for this important drug class. Cerivastatin was withdrawn from the market for myotoxicity safety concerns. BMS-423526 [{(3R,5S)-7-[4-(4-fluorophenyl)-6,7-dihydro-2-(1-methylethyl)-5H-benzo[6,7]cyclohepta[1,2-b]pyridin-3-yl]-3,5-dihydroxy-heptenoic acid} sodium salt], similar to cerivastatin in potency and lipophilicity, was terminated in early clinical development due to an unacceptable myotoxicity profile. In this report, we describe the guinea pig as a model of statin-induced cholesterol lowering and myotoxicity and show that this model can distinguish statins with unacceptable myotoxicity profiles from statins with acceptable safety profiles. In our guinea pig model, both cerivastatin and BMS-423526 induced myotoxicity at doses near the ED(50) for total cholesterol (TC) lowering in plasma. In contrast, wide differences between myotoxic and TC-lowering doses were established for the currently marketed, more hydrophilic statins, pravastatin, rosuvastatin, and atorvastatin. This in vivo model compared favorably to an in vitro model, which used statin inhibition of cholesterol synthesis in rat hepatocytes and L6 myoblasts as surrogates of potential efficacy and toxicity, respectively. Our conclusion is that the guinea pig is a useful preclinical in vivo model for demonstrating whether a statin is likely to have an acceptable therapeutic safety margin.


Subject(s)
Guinea Pigs/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Models, Animal , Animals , Cells, Cultured , Drug Evaluation, Preclinical/methods , Guinea Pigs/blood , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Rats , Rats, Sprague-Dawley
10.
J Biol Chem ; 277(38): 35350-6, 2002 Sep 20.
Article in English | MEDLINE | ID: mdl-12122008

ABSTRACT

Targeted gene disruption or overexpression of 12/15-lipoxygenase in mice on the genetic background of apolipoprotein E or low density lipoprotein-receptor (LDL-R) deficiency has implicated 12/15-lipoxygenase in atherogenesis. The data support indirectly a role for 12/15-lipoxygenase in the oxidative modification of low density lipoprotein. In this study we set out to explore other potential mechanisms for 12/15-lipoxygenase in atherosclerosis using apolipoprotein B mRNA editing catalytic polypeptide-1/LDL-R double-deficient mice, a model highly related to the human condition of familial hypercholesterolemia. 12/15-Lipoxygenase deficiency in this strain led to approximately 50% decrease in aortic lesions in male and female mice at 8 months on a chow diet in the absence of cholesterol differences. While studying 12/15-lipoxygenase-deficient macrophages in culture, we discovered a remarkable selective defect (75-90% decrease) in interleukin-12 production but not in tumor necrosis factor-alpha or nitric oxide release, in response to lipopolysaccharide in the presence or absence of interferon-gamma priming. The lipopolysaccharide/interferon-gamma response was associated with a 33-50% decrease in nuclear interferon consensus sequence-binding protein, which is consistent with interferon consensus sequence-binding protein containing protein complex-dependent regulation of the interleukin-12 p40 gene. The decrease in interleukin-12 production was recapitulated in vivo in mouse aortas of the triple knockout group and was reflected in a marked decrease in interferon-gamma expression. The data provide support for a novel mechanism linking the 12/15-lipoxygenase pathway to a known immunomodulatory Th1 cytokine in atherogenesis.


Subject(s)
Arachidonate 12-Lipoxygenase/physiology , Arachidonate 15-Lipoxygenase/physiology , Arteriosclerosis/metabolism , Disease Models, Animal , Hyperlipoproteinemia Type II/metabolism , Interleukin-12/biosynthesis , Macrophages, Peritoneal/metabolism , APOBEC-1 Deaminase , Animals , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/genetics , Arteriosclerosis/enzymology , Arteriosclerosis/pathology , Cytidine Deaminase/genetics , Hyperlipoproteinemia Type II/enzymology , Hyperlipoproteinemia Type II/pathology , Macrophages, Peritoneal/enzymology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, LDL/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...