Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Artif Cells Nanomed Biotechnol ; 47(1): 2241-2245, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31174436

ABSTRACT

Background: Fibroblast growth factor 9 (FGF9) is reported to be associated with the pathogenesis of cancers. However, its clinic significance in prostate cancer (PCa) had not yet to be elucidated. The aim of this study was to investigate the diagnostic value of FGF9 in PCa. Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the expression of serum FGF9 at mRNA and protein level in 90 PCa patients, 48 prostatic benign diseases (PBD) patients and 30 normal individuals. The association between FGF9 and clinicopathological features was determined by Chi-square test. Receiver-operator characteristic (ROC) was established to evaluate the diagnostic performance of FGF9 and PSA. Results: Serum FGF9 expression was significantly elevated in PCa patients (p < .001) and was obviously decreased after surgery (p < .001). FGF9 expression was also associated with lymph node metastasis (p = .010). The diagnostic value of FGF9 was higher than the conventional tumor marker PSA with a AUC of 0.846 combined with a sensitivity of 83.3% and a specificity of 81.1%. Conclusions: Serum FGF9 may be employed as a potential diagnostic biomarker of PCa.


Subject(s)
Biomarkers, Tumor/blood , Fibroblast Growth Factor 9/blood , Prostatic Neoplasms/blood , Prostatic Neoplasms/diagnosis , Biomarkers, Tumor/genetics , Fibroblast Growth Factor 9/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , Prostatic Neoplasms/genetics , ROC Curve
2.
Reprod Fertil Dev ; 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25782017

ABSTRACT

Cryptorchidism or local testicular heat treatment induces reversible oligospermia or azoospermia in rodents and humans via increased germ cell apoptosis. Research in this field has concentrated on the impact of heat on spermatogenesis, with rather little attention paid to the molecular effects of heat treatment on Leydig cell function. In the present study, we investigated the effects of exposure to heat stress on the proliferative activity and testosterone biosynthesis of Leydig cells. We subjected adult rats to a single local testicular heat treatment of water at 43°C for 30min. The expression of Leydig cell-specific markers, such as cholesterol side-chain cleavage (P450SCC) and 3?-hydroxysteroid dehydrogenase, was evaluated by immunohistochemistry and western blot analysis. The proliferative activity of Leydig cells was detected by immunostaining with proliferation-associated markers, including Ki67, bromodeoxyuridine and phosphohistone-H3 (pHH3). The mRNA and protein levels of cell cycle proteins and testosterone synthesis-related enzymes were measured by real-time polymerase chain reaction and western blot analysis, respectively. The testes of heat-treated rats contained 50% more Leydig cells than those of control rats, indicating induction of Leydig cell hyperplasia by testicular heat treatment. Increased proliferative activity in Leydig cells, evidenced by enhanced expression of cell cycle proteins, was the main cause of Leydig cell hyperplasia. In addition, heat treatment reduced serum and testicular testosterone concentrations. Consistent with this finding, heat stress downregulated two enzymes required for testosterone biosynthesis, namely cytochrome P450, family 17 (CYP17) and steroidogenic acute regulatory protein, in Leydig cells. Together, the results suggest that testicular heat leads to Leydig cell hyperplasia and a reduction in testosterone biosynthesis in adult rat testes.

SELECTION OF CITATIONS
SEARCH DETAIL