Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(7)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39064366

ABSTRACT

When using traditional 3D printing equipment to manufacture overhang models, it is often necessary to generate support structures to assist in the printing of parts. The post-processing operation of removing the support structures after printing is time-consuming and wastes material. In order to solve the above problems, a support-free five-degree-of-freedom additive manufacturing (SFAM) method is proposed. Through the homogeneous coordinate transformation matrix, the forward and inverse kinematics equations of the five-degree-of-freedom additive manufacturing device (FAMD) are established, and the joint variables of each axis are solved to realize the five-axis linkage of the additive manufacturing (AM) device. In this research work, initially, the layered curve is obtained through the structural lines of the overhang model, and a continuous path planning of the infill area is performed on it, and further, the part printing experiments are conducted on the FAMD. Compared with the traditional three-axis additive manufacturing (TTAM) method, the SFAM method shortens the printing time by 23.58% and saves printing materials by 33.06%. The experimental results show that the SFAM method realizes the support-free printing of overhang models, which not only improves the accuracy of the parts but also the manufacturing efficiency of the parts.

2.
Micromachines (Basel) ; 14(9)2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37763838

ABSTRACT

Aiming at the problems of the complex shape, difficult three-dimensional (3D) digital modeling and high manufacturing quality requirements of gas turbine blades (GTB), a method of fitting the blade profile line based on a cubic uniform B-spline interpolation function was proposed. Firstly, surface modeling technology was used to complete the fitting of the blade profile of the GTB, and the 3D model of the GTB was synthesized. Secondly, the processing parameters of the additive manufacturing were set, and the GTB model was printed by fused deposition technology. Then, the rapid investment casting was completed with the printed model as a wax model to obtain the GTB casting. Finally, the blade casting was post-processed and measured, and it was found to meet the requirements of machining accuracy and surface quality.

3.
Angew Chem Int Ed Engl ; 62(38): e202309784, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37539978

ABSTRACT

Metal single atoms (SAs) anchored in carbon support via coordinating with N atoms are efficient active sites to oxygen reduction reaction (ORR). However, rational design of single atom catalysts with highly exposed active sites is challenging and urgently desirable. Herein, an anion exchange strategy is presented to fabricate Fe-N4 moieties anchored in hierarchical carbon nanoplates composed of hollow carbon spheres (Fe-SA/N-HCS). With the coordinating O atoms are substituted by N atoms, Fe SAs with Fe-O4 configuration are transformed into the ones with Fe-N4 configuration during the thermal activation process. Insights into the evolution of central atoms demonstrate that the SAs with specific coordination environment can be obtained by modulating in situ anion exchange process. The strategy produces a large quantity of electrochemical accessible site and high utilization rate of Fe-N4 . Fe-SA/N-HCS shows excellent ORR electrocatalytic performance with half-wave potential of 0.91 V (vs. RHE) in 0.1 M KOH, and outstanding performance when used in rechargeable aqueous and flexible Zn-air batteries. The evolution pathway for SAs demonstrated in this work offers a novel strategy to design SACs with various coordination environment and enhanced electrocatalytic activity.

4.
J Colloid Interface Sci ; 633: 828-835, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36495805

ABSTRACT

The rational design and fabrication of platinum group metal-free (PGM-free) electrocatalysts for oxygen reduction reaction (ORR) via economically feasible approach is essential for reducing the cost of fuel cells and metal-air batteries. Catalysts must have very high activity, and excellent mass diffusion of reactants. Herein, we display a high-performing dual-metal single atom catalyst (DM-SAC) composed of Fe and Ni SA active sites immobilized in porous carbon nanospheres (Fe/Ni-N-PCS), prepared via defects/vacancies anchoring strategy. The abundant and accessible edge-hosted Fe and Ni SA active sites can promote the adsorption/desorption behavior for ORR intermediates attributing to possible synergistic effects between dual-metal SA active sites. Thus, the as-developed Fe/Ni-N-PCS DM-SAC exhibits impressive ORR electrocatalytic performance in both alkaline (Eonset = 1.04 V, E1/2 = 0.9 V) and acid solutions (Eonset = 0.87 V, E1/2 = 0.71 V), and high stability, outperforming SACs with solo Fe-Nx or Ni-Nx active sites, and benchmark PGM. Fe/Ni-N-PCS also exhibits superior oxygen evolution reaction (OER) performance with low overpotential and long-term stability. Zn-air battery with Fe/Ni-N-PCS cathode yields encouraging performance, including working potential, peak power density, and the stability of charge and discharge cycles. Our synthesis method may promote the fabrication of other DM-SAC and the great promise in practical applications.

5.
J Colloid Interface Sci ; 622: 209-217, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35500326

ABSTRACT

Single-atom electrocatalysts with metal-nitrogen-carbon (MNC SACs) moieties in carbon support display outstanding electrocatalytic performance towards oxygen reduction reaction (ORR) and have received widespread attentions. Only active sites on the edges of pores in carbon support are electrochemically accessible and contribute to ORR. Herein, we report a combined hydroxyl-functionalized and NH4Cl-assisted etching strategy to effectively promote the yield of edge-hosted Cu SAs. Thus, well-defined SAs with Cu-N4 configuration are generated into the defect of carbonaceous nanospheres (CuSAs@DCSs). Impressively, the obtained SACs renders outstanding electrocatalytic ORR activity with onset, half-wave potentials of 1.02 V, 0.90 V, and extremely high stability, which transcends the noble-metals and most of the previously reported catalysts. When used in rechargeable Zn-air batteries, CuSAs@DCSs achieves ultralong cycle life at the large current density of 10 mA cm-2 (over 260 h) with low charge-discharge potential gap. Our study demonstrates that the creation of abundant micropores enriches the electrochemically accessible SAs, which locate at the edge-defects and are responsible for the remarkable ORR performance. This work sheds a facile strategy for designing and developing efficient electrocatalyst for various energy-related electrocatalytic reactions.

SELECTION OF CITATIONS
SEARCH DETAIL