Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Nanomedicine ; 19: 4651-4665, 2024.
Article in English | MEDLINE | ID: mdl-38799698

ABSTRACT

Introduction: Recently, nanobubbles (NBs) have gained significant traction in the field of tumor diagnosis and treatment owing to their distinctive advantages. However, the application of NBs is limited due to their restricted size and singular reflection section, resulting in low ultrasonic reflection. Methods: We synthesized a nano-scale ultrasound contrast agent (IR783-SiO2NPs@NB) by encapsulating SiO2 nanoparticles in an IR783-labeled lipid shell using an improved film hydration method. We characterized its physicochemical properties, examined its microscopic morphology, evaluated its stability and cytotoxicity, and assessed its contrast-enhanced ultrasound imaging capability both in vitro and in vivo. Results: The results show that IR783-SiO2NPs@NB had a "donut-type" composite microstructure, exhibited uniform particle size distribution (637.2 ± 86.4 nm), demonstrated excellent stability (30 min), high biocompatibility, remarkable tumor specific binding efficiency (99.78%), and an exceptional contrast-enhanced ultrasound imaging capability. Conclusion: Our newly developed multiple scattering NBs with tumor targeting capacity have excellent contrast-enhanced imaging capability, and they show relatively long contrast enhancement duration in solid tumors, thus providing a new approach to the structural design of NBs.


Subject(s)
Contrast Media , Nanoparticles , Particle Size , Silicon Dioxide , Ultrasonography , Contrast Media/chemistry , Ultrasonography/methods , Animals , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Humans , Cell Line, Tumor , Mice , Neoplasms/diagnostic imaging , Microbubbles , Mice, Nude , Mice, Inbred BALB C , Indoles
2.
Vaccines (Basel) ; 12(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38400110

ABSTRACT

Vaccination-route-dependent adjuvanticity was identified as being associated with the specific features of antigen-carrying nanoparticles (NPs) in the present work. Here, we demonstrated that the mechanical properties and the decomposability of NP adjuvants play key roles in determining the antigen accessibility and thus the overall vaccine efficacy in the immune system when different vaccination routes were employed. We showed that soft nano-vaccines were associated with more efficient antigen uptake when administering subcutaneous (S.C.) vaccination, while the slow decomposition of hard nano-vaccines promoted antigen uptake when intravenous (I.V.) vaccination was employed. In comparison to the clinically used aluminum (Alum) adjuvant, the NP adjuvants were found to stimulate both humoral and cellular immune responses efficiently, irrespective of the vaccination route. For vaccination via S.C. and I.V. alike, the NP-based vaccines show excellent protection for mice from Staphylococcus aureus (S. aureus) infection, and their survival rates are 100% after lethal challenge, being much superior to the clinically used Alum adjuvant.

3.
Pharmaceutics ; 15(5)2023 May 13.
Article in English | MEDLINE | ID: mdl-37242735

ABSTRACT

Highly sensitive staphylococcal enterotoxin B (SEB) assay is of great importance for the prevention of toxic diseases caused by SEB. In this study, we present a gold nanoparticle (AuNP)-linked immunosorbent assay (ALISA) for detecting SEB in a sandwich format using a pair of SEB specific monoclonal antibodies (mAbs) performed in microplates. First, the detection mAb was labeled with AuNPs of different particle sizes (15, 40 and 60 nm). Then the sandwich immunosorbent assay for SEB detection was performed routinely in a microplate except for using AuNPs-labeled detection mAb. Next, the AuNPs adsorbed on the microplate were dissolved with aqua regia and the content of gold atoms was determined by graphite furnace atomic absorption spectrometry (GFAAS). Finally, a standard curve was drawn of the gold atomic content against the corresponding SEB concentration. The detection time of ALISA was about 2.5 h. AuNPs at 60 nm showed the highest sensitivity with an actual measured limit of detection (LOD) of 0.125 pg/mL and a dynamic range of 0.125-32 pg/mL. AuNPs at 40 nm had an actual measured LOD of 0.5 pg/mL and a dynamic range of 0.5 to 128 pg/mL. AuNPs at 15 nm had an actual measured LOD of 5 pg/mL, with a dynamic range of 5-1280 pg/mL. With detection mAb labeled with AuNPs at 60 nm, ALISA's intra- and interassay coefficient variations (CV) at three concentrations (2, 8, and 20 pg/mL) were all lower than 12% and the average recovery level was ranged from 92.7% to 95.0%, indicating a high precision and accuracy of the ALISA method. Moreover, the ALISA method could be successfully applied to the detection of various food, environmental, and biological samples. Therefore, the successful establishment of the ALISA method for SEB detection might provide a powerful tool for food hygiene supervision, environmental management, and anti-terrorism procedures and this method might achieve detection and high-throughput analysis automatically in the near future, even though GFAAS testing remains costly at present.

4.
Vaccines (Basel) ; 12(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38250841

ABSTRACT

Nanoparticles have been identified in numerous studies as effective antigen delivery systems that enhance immune responses. However, it remains unclear whether this enhancement is a result of increased antigen uptake when carried by nanoparticles or the adjuvanticity of the nanoparticle carriers. Consequently, it is important to quantify antigen uptake by dendritic cells in a manner that is free from artifacts in order to analyze the immune response when antigens are carried by nanoparticles. In this study, we demonstrated several scenarios (antigens on nanoparticles or inside cells) that are likely to contribute to the generation of artifacts in conventional fluorescence-based quantification. Furthermore, we developed the necessary assay for accurate uptake quantification. PLGA NPs were selected as the model carrier system to deliver EsxB protein (a Staphylococcus aureus antigen) in order to testify to the feasibility of the established method. The results showed that for the same antigen uptake amount, the antigen delivered by PLGA nanoparticles could elicit 3.6 times IL-2 secretion (representative of cellular immune response activation) and 1.5 times IL-12 secretion (representative of DC maturation level) compared with pure antigen feeding. The findings above give direct evidence of the extra adjuvanticity of PLGA nanoparticles, except for their delivery functions. The developed methodology allows for the evaluation of immune cell responses on an antigen uptake basis, thus providing a better understanding of the origin of the adjuvanticity of nanoparticle carriers. Ultimately, this research provides general guidelines for the formulation of nano-vaccines.

5.
Bioorg Chem ; 118: 105486, 2022 01.
Article in English | MEDLINE | ID: mdl-34801948

ABSTRACT

The colchicine binding site of tubulin is a promising target for discovering novel antitumor agents which exert the antiangiogenic effect and are not susceptible to multidrug resistance. For identifying novel tubulin inhibitors, structure-based virtual screening was applied to identify hit 9 which displayed moderate tubulin polymerization inhibition and broad-spectrum in vitro antitumor activity. Structural optimization was performed, and biological assay revealed analog E27 displayed the best antitumor activity with IC50 values ranging from 7.81 µM to 10.36 µM, and improved tubulin polymerization inhibitory activity (IC50 = 16.1 µM). It significantly inhibited cancer cell migration and invasion, induced cell apoptosis and arrested the cell cycle at G2/M phase. Moreover, the apoptotic effect of E27 is related to the increased ROS level, the decrease of MMP, and the abnormal expression of apoptosis-related proteins. Taken together, these results suggested E27 was a promising lead compound for discovering novel tubulin-targeted antitumor agents.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Tubulin Modulators/pharmacology , Tubulin/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Polymerization/drug effects , Structure-Activity Relationship , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
6.
Phytother Res ; 33(12): 3251-3260, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31506998

ABSTRACT

Acacia catechu (L.f.) Willd (ACW) and Scutellaria baicalensis Georgi (SBG) are one of the most famous couplet Chinese medicines, widely used for treating infantile cough, phlegm, and fever caused by pulmonary infection. However, the underlying molecular mechanism of their anti-inflammatory activity has not been determined. The aim of this study was to evaluate the protective effect of this couplet Chinese medicines (ACW-SBG) on lipopolysaccharide (LPS)-induced inflammatory responses in acute lung injury (ALI) model of rats and the potential molecular mechanisms responsible for anti-inflammatory activities in alveolar epithelial type II cells (AEC-II). Standardization of the 70% ethanol extract of ACW and SBG was performed by using a validated reversed-phase high-pressure liquid chromatography method. Rats were pretreated with ACW-SBG for 7 days prior to LPS challenge. We assessed the effects of ACW-SBG on the LPS-induced production of tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß) in the bronchoalveolar lavage fluid (BALF). The wet-to-dry weight ratio was calculated, and hematoxylin and eosin staining of lung tissue was performed. Cell viability of AEC-II was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Real-time quantitative reverse transcription polymerase chain reaction assay was carried out to quantify the relative gene expression of TNF-α and IL-1ß in AEC-II. The western blotting analysis was executed to elucidate the expression of mediators linked to nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and phosphatidylinositol-3 kinase-protein kinase B (PI3K-Akt) signaling pathways. ACW-SBG significantly decreased lung wet-to-dry weight ratio, ameliorated LPS-induced lung histopathological changes, and reduced the release of inflammatory mediators such as TNF-α and IL-1ß in BALF. In AEC-II, we found that the expression of TNF-α mRNA was also inhibited by ACW-SBG. ACW-SBG blocked NF-κB activation by preventing the phosphorylation of NF-κB (p65) as well as the phosphorylation and degradation of the inhibitor of kappa B kinase. ACW-SBG extracts also inhibited the phosphorylation of respective MAPKs (c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38) as well as Akt. The present study demonstrated that ACW-SBG played a potent anti-inflammatory role in LPS-induced ALI in rats. The potential molecular mechanism was involved in attenuating the NF-κB, MAPKs, and PI3K-Akt signaling pathways in LPS-induced AEC-II.


Subject(s)
Acacia/chemistry , Epithelial Cells/metabolism , Lipopolysaccharides/therapeutic use , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Scutellaria baicalensis/chemistry , Animals , Humans , Lipopolysaccharides/pharmacology , Male , Medicine, Chinese Traditional , Plant Extracts/pharmacology , Rats , Signal Transduction
7.
Nanomedicine ; 21: 102054, 2019 10.
Article in English | MEDLINE | ID: mdl-31310809

ABSTRACT

Bone is one of the prone metastatic sites of lung cancer. Osteoclast plays an important role in bone resorption and the growth of bone metastases of lung cancer. In order to treat bone metastases of lung cancer, we reported a docetaxel (DTX)-loaded nanoparticle, DTX@AHP, which could target dually at osteoclasts and bone metastatic tumor cells. The in vitro drug release from DTX@AHP exhibited pH and redox responsive characteristics. DTX@AHP displayed high binding affinity with bone matrix. In addition, DTX@AHP significantly inhibited the differentiation of RAW264.7 into osteoclast and effectively inhibited the proliferation of osteoclasts and tumor cells in in-vitro 3D bone metastases model of lung cancer. DTX@AHP could accumulate in bone metastases sites in vivo. Consequently, DTX@AHP not only markedly inhibited the growth of bone metastases of lung cancer but also reduced osteolysis in tumor-bearing mice. DTX@AHP exhibited great potential in the treatment of bone metastases of lung cancer.


Subject(s)
Bone Neoplasms/drug therapy , Docetaxel/pharmacology , Lung Neoplasms/drug therapy , Nanoparticles/administration & dosage , Animals , Bone Neoplasms/pathology , Bone Neoplasms/secondary , Cell Proliferation/drug effects , Docetaxel/chemistry , Drug Delivery Systems , Drug Liberation , Heterografts , Humans , Lung Neoplasms/pathology , Mice , Nanoparticles/chemistry , Neoplasm Metastasis , Osteoclasts/drug effects , Osteoclasts/pathology , Osteolysis/chemically induced , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL