Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 15(16): 8386-8394, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39028146

ABSTRACT

The purpose of this study was to evaluate the effects of known probiotic species Lactiplantibacillus plantarum CCFM1214 and Ligilactobacillus salivarius CCFM1215 on halitosis, the oral status, and the oral microbiome. In a double-blind, randomized controlled trial that lasted for five weeks, 43 participants were divided into an oral probiotics group and a control group and given probiotics or control powder for the first four weeks, with the fifth week being the discontinuation period. 33 participants (probiotics group = 21, control group = 12) completed the entire experiment in the end. Oral samples were taken as part of oral health examinations during the baseline period (day 0) and four weeks after (day 28). The nucleotide sequence of the V3-V4 region of 16S rRNA was determined to examine the impact of intervention and time on the oral microbiome. The effects of L. plantarum CCFM1214 and L. salivarius CCFM1215 on the number of Fusobacterium nucleatum in gingival crevicular fluid (GCF) samples of participants were detected by quantitative PCR. After the intervention, L. plantarum CCFM1214 and L. salivarius CCFM1215 significantly reduced the levels of volatile sulfur compounds (VSCs) and the quantity of F. nucleatum in GCF samples, where the average DNA copy number per ng (log) of F. nucleatum decreased from 7.12 ± 0.04 to 6.01 ± 0.09. The ß diversity of the probiotics group, on the whole, tended to be more concentrated and stable after the intervention. In addition, after probiotic intervention, the abundance of Lactobacillus and Bifidobacterium increased, while the abundance of Fusobacterium, Acinetobacter, Porphyromonas, and Aggregatibacter decreased significantly. In general, L. plantarum CCFM1214 and L. salivarius CCFM1215 can alleviate halitosis and considerably lower the value of VSCs and improve the oral microbiota in participants with halitosis.


Subject(s)
Halitosis , Ligilactobacillus salivarius , Probiotics , Humans , Halitosis/microbiology , Probiotics/pharmacology , Probiotics/therapeutic use , Double-Blind Method , Male , Female , Adult , Middle Aged , Microbiota/drug effects , Lactobacillaceae/genetics , Young Adult , RNA, Ribosomal, 16S/genetics , Lactobacillus plantarum , Mouth/microbiology
2.
Crit Rev Food Sci Nutr ; : 1-23, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940319

ABSTRACT

Mounting evidence implicates the gut microbiota as a possible key susceptibility factor for atherosclerosis (AS). The employment of dietary phytochemicals that strive to target the gut microbiota has gained scientific support for treating AS. This study conducted a general overview of the links between the gut microbiota and AS, and summarized available evidence that dietary phytochemicals improve AS via manipulating gut microbiota. Then, the microbial metabolism of several dietary phytochemicals was summarized, along with a discussion on the metabolites formed and the biotransformation pathways involving key gut bacteria and enzymes. This study additionally focused on the anti-atherosclerotic potential of representative metabolites from dietary phytochemicals, and investigated their underlying molecular mechanisms. In summary, microbiota-dependent dietary phytochemical therapy is a promising strategy for AS management, and knowledge of "phytochemical-microbiota-biotransformation" may be a breakthrough in the search for novel anti-atherogenic agents.

3.
Food Funct ; 15(14): 7441-7451, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38904342

ABSTRACT

Liver injury is a life-threatening condition, and the hepatoprotective potential of cyanidin-3-glucoside (C3G) has been previously demonstrated. However, due to the low bioavailability, it has been doubtful that relatively low concentrations of intact C3G in vivo could account for these bioactivities. In this study, the hepatoprotective effects of intragastric and intravenous administration of C3G were investigated in a CCl4 induced liver injury model. Intragastric C3G administration was more effective than intravenous C3G injection in reducing serum damage biomarkers, oxidative stress, and inflammatory responses, indicating that absorption of C3G into the bloodstream does not fully account for its observed benefits in vivo. Furthermore, intragastric C3G administration modulated the gut microbiota structure and increased the contents of five metabolites in the feces and serum with high inter-individual variation, indicating the key role of the interaction between C3G and the gut microbiota. At equivalent doses, the metabolites cyanidin and protocatechuic acid exhibited greater efficacy than C3G in reducing apoptosis and ROS production by activating the Nrf2 pathway in an AAPH-induced oxidative stress model. To achieve the desired health effects via C3G-rich food intake, more attention should be paid to microbially derived catabolites. Screening of specific metabolite-producing strains will help overcome individual differences and enhance the health-promoting effects of C3G.


Subject(s)
Anthocyanins , Gastrointestinal Microbiome , Glucosides , Oxidative Stress , Gastrointestinal Microbiome/drug effects , Anthocyanins/pharmacology , Anthocyanins/administration & dosage , Animals , Glucosides/pharmacology , Glucosides/administration & dosage , Male , Oxidative Stress/drug effects , Liver/metabolism , Liver/drug effects , Rats , Chemical and Drug Induced Liver Injury/prevention & control , Mice , Protective Agents/pharmacology , Protective Agents/administration & dosage , Rats, Sprague-Dawley , Administration, Intravenous
4.
J Agric Food Chem ; 72(20): 11493-11502, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38738816

ABSTRACT

Cacumen platycladi (CP) is a frequently used traditional Chinese medicine to treat hair loss. In this study, CP fermented by Lactiplantibacillus plantarum CCFM1348 increased the proliferation of human dermal papilla cells. In an in vivo assay, compared to nonfermented CP, postbiotics (fermented CP) and synbiotics (live bacteria with nonfermented CP) promoted hair growth in mice. The Wnt/ß-catenin signaling pathway plays crucial roles in the development of hair follicles, including growth cycle restart and maintenance. Both postbiotics and synbiotics upregulated ß-catenin, a major factor of the Wnt/ß-catenin signaling pathway. Postbiotics and synbiotics also increased the vascular endothelial growth factor expression and decreased the BAX/Bcl2 ratio in the dorsal skin of mice. These results suggest that fermented CP by L. plantarum CCFM1348 may promote hair growth through regulating the Wnt/ß-catenin signaling pathway, promoting the expression of growth factors and reducing apoptosis.


Subject(s)
Hair , Wnt Signaling Pathway , Animals , Mice , Hair/metabolism , Hair/growth & development , Hair/chemistry , Humans , Wnt Signaling Pathway/drug effects , Biotransformation , Fermentation , beta Catenin/metabolism , beta Catenin/genetics , Male , Plant Extracts/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Hair Follicle/metabolism , Hair Follicle/growth & development , Cell Proliferation/drug effects , Apoptosis/drug effects , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/growth & development
5.
Cell Genom ; 4(6): 100559, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38740021

ABSTRACT

The gut microbiome displays genetic differences among populations, and characterization of the genomic landscape of the gut microbiome in China remains limited. Here, we present the Chinese Gut Microbial Reference (CGMR) set, comprising 101,060 high-quality metagenomic assembled genomes (MAGs) of 3,707 nonredundant species from 3,234 fecal samples across primarily rural Chinese locations, 1,376 live isolates mainly from lactic acid bacteria, and 987 novel species relative to worldwide databases. We observed region-specific coexisting MAGs and MAGs with probiotic and cardiometabolic functionalities. Preliminary mouse experiments suggest a probiotic effect of two Faecalibacillus intestinalis isolates in alleviating constipation, cardiometabolic influences of three Bacteroides fragilis_A isolates in obesity, and isolates from the genera Parabacteroides and Lactobacillus in host lipid metabolism. Our study expands the current microbial genomes with paired isolates and demonstrates potential host effects, contributing to the mechanistic understanding of host-microbe interactions.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Gastrointestinal Microbiome/genetics , China , Animals , Humans , Mice , Male , Female , Genome, Bacterial/genetics , Genome, Microbial , Feces/microbiology , Obesity/microbiology , Adult , Mice, Inbred C57BL
7.
Biomolecules ; 14(2)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38397477

ABSTRACT

The vaginal epithelial barrier, which integrates mechanical, immune, chemical, and microbial defenses, is pivotal in safeguarding against external pathogens and upholding the vaginal microecological equilibrium. Although the widely used metronidazole effectively curtails Gardnerella vaginalis, a key pathogen in bacterial vaginosis, it falls short in restoring the vaginal barrier or reducing recurrence rates. Our prior research highlighted Lactobacillus crispatus CCFM1339, a vaginally derived Lactobacillus strain, for its capacity to modulate the vaginal epithelial barrier. In cellular models, L. crispatus CCFM1339 fortified the integrity of the cellular monolayer, augmented cellular migration, and facilitated repair. Remarkably, in animal models, L. crispatus CCFM1339 substantially abated the secretion of the barrier disruption biomarker E-cadherin (from 101.45 to 82.90 pg/mL) and increased the anti-inflammatory cytokine IL-10 (35.18% vs. the model), consequently mitigating vaginal inflammation in mice. Immunological assays in vaginal tissues elucidated increased secretory IgA levels (from 405.56 to 740.62 ng/mL) and curtailed IL-17 gene expression. Moreover, L. crispatus CCFM1339 enhanced Lactobacilli abundance and attenuated Enterobacterium and Enterococcus within the vaginal microbiome, underscoring its potential in probiotic applications for vaginal barrier regulation.


Subject(s)
Lactobacillus crispatus , Vaginosis, Bacterial , Humans , Female , Animals , Mice , Gardnerella vaginalis/genetics , Vaginosis, Bacterial/drug therapy , Vaginosis, Bacterial/microbiology , Vagina/microbiology , Lactobacillus/metabolism
8.
Article in English | MEDLINE | ID: mdl-38376820

ABSTRACT

Lacticaseibacillus paracasei has been regarded as a probiotic bacterium because of its role in anti-inflammatory properties and maintenance of intestinal barrier permeability. Here, we explored the anticolitic effects and mechanism of L. paracasei CCFM1222. The results showed that L. paracasei CCFM1222 supplementation could suppress the disease activity index (DAI) and colon length shortening in colitis mice, accompanied by a moderate increase in colonic tight junction proteins (ZO-1, occludin and claudin-1). L. paracasei CCFM1222 intervention significantly suppressed the levels of inflammatory cytokines (TNF-α, IL-1ß, and IL-6) and significantly elevated the activities of antioxidant enzymes (including SOD, GSH-Px, and CAT) in the colon by regulating the TLR4/MyD88/NF-κB and Nrf2 signaling pathways in colitis mice. In addition, L. paracasei CCFM1222 significantly shifted the gut microbiota, including elevating the abundance of Catabacter, Ruminiclostridium 9, Alistipes, and Faecalibaculum, as well as reducing the abundance of Mucispirillum, Escherichia-Shigella, and Salmonella, which was associated with the improvement of colonic barrier damage. Overall, these results suggest that L. paracasei CCFM1222 is a good candidate for probiotic of improving colonic barrier damage and associated diseases.

9.
Food Funct ; 15(4): 1923-1937, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38261274

ABSTRACT

The effects of fermentation on barley starch were studied using Lactiplantibacillus plantarum dy-1. Changes in multi-scale structure and physicochemical properties of barley starch were studied. The chain structure results revealed that fermentation could increase the content of short chain and medium short chain by breaking down long amylopectin side chains in barley and increase amylose content by debranching amylopectin. Also, fermentation promoted the arrangement of short chains into short order structure, leading to the enhancement of hydrogen bond interaction. Furthermore, it improved the helical structure content and relative crystallinity of barley starch by degrading the amorphous structure of barley starch. In terms of physicochemical properties, fermentation inhibited the hydration characteristics of barley starch, thus improving its thermal stability. It also enhanced shear stability, resistance to short-term aging and digestion, and improved gel texture properties. These findings offer potential for the processing and nutritional regulation of fermented barley products.


Subject(s)
Hordeum , Starch , Starch/chemistry , Amylopectin/chemistry , Hordeum/chemistry , Fermentation , Amylose/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL