Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
iScience ; 27(4): 109371, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38510113

ABSTRACT

Cerebral microbleeds (CMBs) are associated with higher risk for various neurological diseases including stroke, dementia, and Alzheimer's disease. However, the understanding of cellular pathology of CMBs, particularly in deep brain regions, remains limited. Utilizing two-photon microscopy and microprism implantation, we longitudinally imaged the impact of CMBs on neuronal and microglial activities across cortical depths in awake mice. A temporary decline in spontaneous neuronal activity occurred throughout cortical layers, followed by recovery within a week. However, significant changes of neuron-neuron activity correlations persisted for weeks. Moreover, microglial contact with neuron soma significantly increased post-microbleeds, indicating an important modulatory role of microglia. Notably, microglial contact, negatively correlated with neuronal firing rate in normal conditions, became uncorrelated after microbleeds, suggesting a decreased neuron-microglia inhibition. These findings reveal chronic alterations in cortical neuronal networks and microglial-neuronal interactions across cortical depths, shedding light on the pathology of CMBs.

2.
Micromachines (Basel) ; 15(2)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38399004

ABSTRACT

Flexible multielectrode arrays with glassy carbon (GC) electrodes and metal interconnection (hybrid MEAs) have shown promising performance in multi-channel neurochemical sensing. A primary challenge faced by hybrid MEAs fabrication is the adhesion of the metal traces with the GC electrodes, as prolonged electrical and mechanical stimulation can lead to adhesion failure. Previous devices with GC electrodes and interconnects made of a homogeneous material (all GC) demonstrated exceptional electrochemical stability but required miniaturization for enhanced tissue integration and chronic electrochemical sensing. In this study, we used two different methods for the fabrication of all GC-MEAs on thin flexible substrates with miniaturized features. The first method, like that previously reported, involves a double pattern-transfer photolithographic process, including transfer-bonding on temporary polymeric support. The second method requires a double-etching process, which uses a 2 µm-thick low stress silicon nitride coating of the Si wafer as the bottom insulator layer for the MEAs, bypassing the pattern-transfer and demonstrating a novel technique with potential advantages. We confirmed the feasibility of the two fabrication processes by verifying the practical conductivity of 3 µm-wide 2 µm-thick GC traces, the GC microelectrode functionality, and their sensing capability for the detection of serotonin using fast scan cyclic voltammetry. Through the exchange and discussion of insights regarding the strengths and limitations of these microfabrication methods, our goal is to propel the advancement of GC-based MEAs for the next generation of neural interface devices.

3.
J Neural Eng ; 18(4)2021 08 12.
Article in English | MEDLINE | ID: mdl-34400592

ABSTRACT

Objective.We derive and demonstrate how residual voltage (RV) from a biphasic electrical stimulation pulse can be used to recognize degradation at the electrode-tissue interface.Approach.Using a first order model of the electrode-tissue interface and a rectangular biphasic stimulation current waveform, we derive the equations for RV as well as RV growth over several stimulation pulses. To demonstrate the use of RV for damage detection, we simulate accelerated damage on sputtered iridium oxide film (SIROF) electrodes using potential cycling. RV measurements of the degraded electrodes are compared against standard characterization methods of cyclic voltammetry and electrochemical impedance spectroscopy.Main results.Our theoretical discussion illustrates how an intrinsic RV arises even from perfectly balanced biphasic pulses due to leakage via the charge-transfer resistance. Preliminary data inin-vivorat experiments follow the derived model of RV growth, thereby validating our hypothesis that RV is a characteristic of the electrode-tissue interface. RV can therefore be utilized for detecting damage at the electrode. Our experimental results for damage detection show that delamination of SIROF electrodes causes a reduction in charge storage capacity, which in turn reflects a measurable increase in RV.Significance.Chronically implanted electrical stimulation systems with multi-electrode arrays have been the focus of physiological engineering research for the last decade. Changes in RV over time can be a quick and effective method to identify and disconnect faulty electrodes in large arrays. Timely diagnoses of electrode status can ensure optimal long term operation, and prevent further damage to the tissue near these electrodes.


Subject(s)
Electrodes, Implanted , Electric Impedance , Electric Stimulation , Electrodes
4.
Adv Biosyst ; 4(6): e1900287, 2020 06.
Article in English | MEDLINE | ID: mdl-32363792

ABSTRACT

For brain computer interfaces (BCI), the immune response to implanted electrodes is a major biological cause of device failure. Bioactive coatings such as neural adhesion molecule L1 have been shown to improve the biocompatibility, but are difficult to handle or produce in batches. Here, a synthetic zwitterionic polymer coating, poly(sulfobetaine methacrylate) (PSBMA) is developed for neural implants with the goal of reducing the inflammatory host response. In tests in vitro, the zwitterionic coating inhibits protein adsorption and the attachment of fibroblasts and microglia, and remains stable for at least 4 weeks. In vivo two-photon microscopy on CX3CR1-GFP mice shows that the zwitterionic coating significantly suppresses the microglial encapsulation of neural microelectrodes over a 6 h observation period. Furthermore, the lower microglial encapsulation on zwitterionic polymer-coated microelectrodes is revealed to originate from a reduction in the size but not the number of microglial end feet. This work provides a facile method for coating neural implants with zwitterionic polymers and illustrates the initial interaction between microglia and coated surface at high temporal and spatial resolution.


Subject(s)
Coated Materials, Biocompatible , Methacrylates , Microglia/metabolism , Neural Prostheses , 3T3 Cells , Animals , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Methacrylates/chemistry , Methacrylates/pharmacology , Mice , Mice, Transgenic , Microelectrodes
5.
J Neural Eng ; 17(4): 046012, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32434161

ABSTRACT

OBJECTIVE: Neural interfacing technologies could significantly improve quality of life for people living with the loss of a limb. Both motor commands and sensory feedback must be considered; these complementary systems are segregated from one another in the spinal nerve. APPROACH: The dorsal root ganglion-ventral root (DRG-VR) complex was targeted chronically with floating microelectrode arrays designed to record from motor neuron axons in the VR or stimulate sensory neurons in the DRG. Hematoxylin and eosin and Nissl/Luxol fast blue staining were performed. Characterization of the tissue response in regions of interest and pixel-based image analyses were used to quantify MAC387 (monocytes/macrophages), NF200 (axons), S100 (Schwann cells), vimentin (fibroblasts, endothelial cells, astrocytes), and GLUT1 (glucose transport proteins) reactivity. Implanted roots were compared to non-implanted roots and differences between the VR and DRG examined. MAIN RESULTS: The tissue response associated with chronic array implantation in this peripheral location is similar to that observed in central nervous system locations. Markers of inflammation were increased in implanted roots relative to control roots with MAC387 positive cells distributed throughout the region corresponding to the device footprint. Significant decreases in neuronal density and myelination were observed in both the VR, which contains only neuronal axons, and the DRG, which contains both neuronal axons and cell bodies. Notably, decreases in NF200 in the VR were observed only at implant times less than ten weeks. Observations related to the blood-nerve barrier and tissue integrity suggest that tissue remodeling occurs, particularly in the VR. SIGNIFICANCE: This study was designed to assess the viability of the DRG-VR complex as a site for neural interfacing applications and suggests that continued efforts to mitigate the tissue response will be critical to achieve the overall goal of a long-term, reliable neural interface.


Subject(s)
Endothelial Cells , Quality of Life , Animals , Axons , Cats , Ganglia, Spinal , Microelectrodes
6.
Biosens Bioelectron ; 155: 112096, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32090868

ABSTRACT

Intracortical microelectrodes are being developed to both record and stimulate neurons to understand brain circuitry or restore lost functions. However, the success of these probes is hampered partly due to the inflammatory host tissue responses to implants. To minimize the foreign body reactions, L1, a brain derived neuronal specific cell adhesion molecule, has been covalently bound to the neural electrode array surface. Here we evaluated the chronic recording performance of L1-coated silicon based laminar neural electrode arrays implanted into V1m cortex of mice. The L1 coating enhanced the overall visually evoked single-unit (SU) yield and SU amplitude, as well as signal-to-noise-ratio (SNR) in the mouse brain compared to the uncoated arrays across the 0-1500 µm depth. The improvement in recording is most dramatic in the hippocampus region, where the control group showed severe recording yield decrease after one week, while the L1 implants maintained a high SU yield throughout the 16 weeks. Immunohistological analysis revealed significant increases of axonal and neuronal density along with significantly lowered microglia activation around the L1 probe after 16 weeks. These results collectively confirm the effectiveness of L1 based biomimetic coating on minimizing inflammatory tissue response and improving neural recording quality and longevity. Improving chronic recording will benefit the brain-computer interface technologies and neuroscience studies involving chronic tracking of neural activities.


Subject(s)
Brain/physiology , Cell Adhesion Molecules , Coated Materials, Biocompatible , Electronics/methods , Neurons/physiology , Proteins , Animals , Axons , Blood-Brain Barrier/metabolism , Cell Adhesion Molecules/chemistry , Cell Survival , Dielectric Spectroscopy , Electrodes, Implanted , Electronics/standards , Electrophysiological Phenomena , Immunohistochemistry , Mice , Microelectrodes , Permeability , Proteins/chemistry
7.
Analyst ; 145(7): 2612-2620, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32073100

ABSTRACT

Melatonin (MT) is an important electroactive hormone that regulates different physiological actions in the brain, ranging from circadian clock to neurodegeneration. An impressive number of publications have highlighted the effectiveness of MT treatments in different types of sleep and neurological disorders, including Alzheimer's and Parkinson's disease. The ability to detect MT in different regions of the brain would provide further insights into the physiological roles and therapeutic effects of MT. While multiple electrochemical methods have been used to detect MT in biological samples, monitoring MT in the brain of live animals has not been demonstrated. Here, we optimized a square wave voltammetry (SWV) electroanalytical method to evaluate the MT detection performance at CFEs in vitro and in vivo. SWV was able to sensitively detect the MT oxidation peak at 0.7 V, and discriminate MT from most common interferents in vitro. More importantly, using the optimized SWV, CFEs successfully detected and reliably quantified MT concentrations in the visual cortex of anesthetized mice after intraperitoneal injections of different MT doses, offering stable MT signals for up to 40 minutes. To the best of our knowledge, this is the first electrochemical measurement of exogenously administered MT in vivo. This electrochemical MT sensing technique will provide a powerful tool for further understanding MT's action in the brain.


Subject(s)
Brain/metabolism , Electrochemical Techniques/methods , Melatonin/analysis , Animals , Carbon/chemistry , Electrodes , Injections, Intraperitoneal , Male , Melatonin/administration & dosage , Mice , Mice, Inbred C57BL , Oxidation-Reduction
8.
Proc Natl Acad Sci U S A ; 117(1): 214-220, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31871178

ABSTRACT

Piezoelectric materials, a type of "smart" material that generates electricity while deforming and vice versa, have been used extensively for many important implantable medical devices such as sensors, transducers, and actuators. However, commonly utilized piezoelectric materials are either toxic or nondegradable. Thus, implanted devices employing these materials raise a significant concern in terms of safety issues and often require an invasive removal surgery, which can damage directly interfaced tissues/organs. Here, we present a strategy for materials processing, device assembly, and electronic integration to 1) create biodegradable and biocompatible piezoelectric PLLA [poly(l-lactic acid)] nanofibers with a highly controllable, efficient, and stable piezoelectric performance, and 2) demonstrate device applications of this nanomaterial, including a highly sensitive biodegradable pressure sensor for monitoring vital physiological pressures and a biodegradable ultrasonic transducer for blood-brain barrier opening that can be used to facilitate the delivery of drugs into the brain. These significant applications, which have not been achieved so far by conventional piezoelectric materials and bulk piezoelectric PLLA, demonstrate the PLLA nanofibers as a powerful material platform that offers a profound impact on various medical fields including drug delivery, tissue engineering, and implanted medical devices.


Subject(s)
Absorbable Implants , Micro-Electrical-Mechanical Systems/instrumentation , Nanofibers/chemistry , Transducers , Drug Delivery Systems , Electricity , Electronics , Equipment Design , Monitoring, Physiologic/instrumentation , Pressure , Prostheses and Implants , Tissue Engineering , Ultrasonics
9.
Acta Biomater ; 103: 81-91, 2020 02.
Article in English | MEDLINE | ID: mdl-31863910

ABSTRACT

Electrical stimulation of the muscle has been proven efficacious in preventing atrophy and/or reanimating paralyzed muscles. Intramuscular electrodes made from metals have significantly higher Young's Moduli than the muscle tissues, which has the potential to cause chronic inflammation and decrease device performance. Here, we present an intramuscular electrode made from an elastomeric conducting polymer composite consisting of PEDOT-PEG copolymer, silicone and carbon nanotubes (CNT) with fluorosilicone insulation. The electrode wire has a Young's modulus of 804 (±99) kPa, which better mimics the muscle tissue modulus than conventional stainless steel (SS) electrodes. Additionally, the non-metallic composition enables metal-artifact free CT and MR imaging. These soft wire (SW) electrodes present comparable electrical impedance to SS electrodes of similar geometric surface area, activate muscle at a lower threshold, and maintain stable electrical properties in vivo up to 4 weeks. Histologically, the SW electrodes elicited significantly less fibrotic encapsulation and less IBA-1 positive macrophage accumulation than the SS electrodes at one and three months. Further phenotyping the macrophages with the iNOS (pro-inflammatory) and ARG-1 (pro-healing) markers revealed significantly less presence of pro-inflammatory macrophage around SW implants at one month. By three months, there was a significant increase in pro-healing macrophages (ARG-1) around the SW implants but not around the SS implants. Furthermore, a larger number of AchR clusters closer to SW implants were found at both time points compared to SS implants. These results suggest that a softer implant encourages a more intimate and healthier electrode-tissue interface. STATEMENT OF SIGNIFICANCE: Intramuscular electrodes made from metals have significantly higher Young's Moduli than the muscle tissues, which has the potential to cause chronic inflammation and decrease device performance. Here, we present an intramuscular electrode made from an elastomeric conducting polymer composite consisting of PEDOT-PEG copolymer, silicone and carbon nanotubes with fluorosilicone insulation. This elastomeric composite results in an electrode wire with a Young's modulus mimicking that of the muscle tissue, which elicits significantly less foreign body response compared to stainless steel wires. The lack of metal in this composite also enables metal-artifact free MRI and CT imaging.


Subject(s)
Elastomers/chemistry , Electrodes, Implanted , Muscles/physiology , Animals , Biocompatible Materials/chemistry , Electrochemistry , Magnetic Resonance Imaging , Male , Muscles/diagnostic imaging , Rats, Sprague-Dawley , Receptors, Cholinergic/metabolism , X-Ray Microtomography
10.
Acta Biomater ; 99: 72-83, 2019 11.
Article in English | MEDLINE | ID: mdl-31446048

ABSTRACT

The advancement of neural prostheses requires implantable neural electrodes capable of electrically stimulating or recording signals from neurons chronically. Unfortunately, the implantation injury and presence of foreign bodies lead to chronic inflammation, resulting in neuronal death in the vicinity of electrodes. A key mediator of inflammation and neuronal loss are reactive oxygen and nitrogen species (RONS). To mitigate the effect of RONS, a superoxide dismutase mimic compound, manganese(III) meso-tetrakis-(N-(2-aminoethyl)pyridinium-2-yl) porphyrin (iSODm), was synthesized to covalently attach to the neural probe surfaces. This new compound showed high catalytic superoxide scavenging activity. In microglia cell line cultures, the iSODm coating effectively reduced superoxide production and altered expression of iNOS, NADPH oxidase, and arginase. After 1 week of implantation, iSODm coated electrodes showed significantly lower expression of markers for oxidative stress immediately adjacent to the electrode surface, as well as significantly less neurons undergoing apoptosis. STATEMENT OF SIGNIFICANCE: One critical challenge in the translation of neural electrode technology to clinically viable devices for brain computer interface or deep brain stimulation applications is the chronic degradation of the device performance due to neuronal degeneration around the implants. One of the key mediators of inflammation and neuronal degeneration is reactive oxygen and nitrogen species released by injured neurons and inflammatory microglia. This research takes a biomimetic approach to synthesize a compound having similar reactivity as superoxide dismutase, which can catalytically scavenge reactive oxygen and nitrogen species, thereby reducing oxidative stress and decreasing neuronal degeneration. By immobilizing the compound covalently on the surface of neural implants, we show that the neuronal degeneration and oxidative stress around the implants is significantly reduced.


Subject(s)
Coated Materials, Biocompatible/chemistry , Electric Stimulation Therapy/instrumentation , Neural Prostheses , Superoxides/chemistry , Animals , Apoptosis , Inflammation , Male , Microelectrodes , Microglia/metabolism , Neurons/metabolism , Nitric Oxide/chemistry , Oxidative Stress , Oxygen/chemistry , Porphyrins/chemistry , Rats , Rats, Sprague-Dawley , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/chemistry
11.
Proc Natl Acad Sci U S A ; 116(2): 650-659, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30584104

ABSTRACT

Neuritic retraction in the absence of overt neuronal death is a shared feature of normal aging and neurodegenerative disorders, but the intracellular mechanisms modulating this process are not understood. We propose that cumulative distal mitochondrial protein damage results in impaired protein import, leading to mitochondrial dysfunction and focal activation of the canonical apoptosis pathway in neurites. This is a controlled process that may not lead to neuronal death and, thus, we term this phenomenon "neuritosis." Consistent with our hypothesis, we show that in primary cerebrocortical neurons, mitochondrial distance from the soma correlates with increased mitochondrial protein damage, PINK1 accumulation, reactive oxygen species production, and decreased mitochondrial membrane potential and depolarization threshold. Furthermore, we demonstrate that the distance-dependent mitochondrial membrane potential gradient exists in vivo in mice. We demonstrate that impaired distal mitochondria have a lower threshold for focal/nonlethal neuritic caspase-3 activation in normal neurons that is exacerbated in aging, stress, and neurodegenerative conditions, thus delineating a fundamental mechanistic underpinning for synaptic vulnerability.


Subject(s)
Apoptosis , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Neurites/metabolism , Neurodegenerative Diseases/metabolism , Animals , Caspase 3/genetics , Caspase 3/metabolism , Mice , Mice, Transgenic , Mitochondria/genetics , Mitochondria/pathology , Neurites/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Protein Kinases/genetics , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism
12.
Biomaterials ; 174: 79-94, 2018 08.
Article in English | MEDLINE | ID: mdl-29783119

ABSTRACT

Implantable electrode devices enable long-term electrophysiological recordings for brain-machine interfaces and basic neuroscience research. Implantation of these devices, however, leads to neuronal damage and progressive neural degeneration that can lead to device failure. The present study uses in vivo two-photon microscopy to study the calcium activity and morphology of neurons before, during, and one month after electrode implantation to determine how implantation trauma injures neurons. We show that implantation leads to prolonged, elevated calcium levels in neurons within 150 µm of the electrode interface. These neurons show signs of mechanical distortion and mechanoporation after implantation, suggesting that calcium influx is related to mechanical trauma. Further, calcium-laden neurites develop signs of axonal injury at 1-3 h post-insert. Over the first month after implantation, physiological neuronal calcium activity increases, suggesting that neurons may be recovering. By defining the mechanisms of neuron damage after electrode implantation, our results suggest new directions for therapies to improve electrode longevity.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Electrodes, Implanted , Neurons/metabolism , Animals , Brain-Computer Interfaces , Electric Impedance , Fluorescent Dyes/chemistry , Male , Mice , Microelectrodes , Microscopy, Fluorescence, Multiphoton/methods , Models, Animal , Nerve Degeneration/metabolism , Propidium/administration & dosage , Silicone Elastomers/metabolism , Time Factors
13.
Biomaterials ; 161: 117-128, 2018 04.
Article in English | MEDLINE | ID: mdl-29421549

ABSTRACT

Intracortical microelectrode arrays, especially the Utah array, remain the most common choice for obtaining high dimensional recordings of spiking neural activity for brain computer interface and basic neuroscience research. Despite the widespread use and established design, mechanical, material and biological challenges persist that contribute to a steady decline in recording performance (as evidenced by both diminished signal amplitude and recorded cell population over time) or outright array failure. Device implantation injury causes acute cell death and activation of inflammatory microglia and astrocytes that leads to a chronic neurodegeneration and inflammatory glial aggregation around the electrode shanks and often times fibrous tissue growth above the pia along the bed of the array within the meninges. This multifaceted deleterious cascade can result in substantial variability in performance even under the same experimental conditions. We track both impedance signatures and electrophysiological performance of 4 × 4 floating microelectrode Utah arrays implanted in the primary monocular visual cortex (V1m) of Long-Evans rats over a 12-week period. We employ a repeatable visual stimulation method to compare signal-to-noise ratio as well as single- and multi-unit yield from weekly recordings. To explain signal variability with biological response, we compare arrays categorized as either Type 1, partial fibrous encapsulation, or Type 2, complete fibrous encapsulation and demonstrate performance and impedance signatures unique to encapsulation type. We additionally assess benefits of a biomolecule coating intended to minimize distance to recordable units and observe a temporary improvement on multi-unit recording yield and single-unit amplitude.


Subject(s)
Biomimetics/methods , Electric Impedance , Animals , Electrophysiological Phenomena , Microelectrodes , Rats
14.
Nanomedicine ; 14(7): 2495-2503, 2018 10.
Article in English | MEDLINE | ID: mdl-28571834

ABSTRACT

Magnesium's complete in vivo degradation is appealing for medical implant applications. Rapid corrosion and hydrogen bubble generation along with inflammatory host tissue response have limited its clinical use. Here we electropolymerized a poly (3,4-ethylenedioxythiophene) (PEDOT) and graphene oxide (GO) film directly on Mg surface. GO acted as nano-drug carrier to carry anti-inflammatory drug dexamethasone (Dex). PEDOT/GO/Dex coatings improved Mg corrosion resistance and decreased the rate of hydrogen production. Dex could be released driven by the electrical current generated from Mg corrosion. The anti-inflammatory activity of the released Dex was confirmed in microglia cultures. This PEDOT/GO/Dex film displayed the ability to both control Mg corrosion and act as an on demand release coating that delivers Dex at the corrosion site to minimize detrimental effects of corrosion byproducts. Such multi-functional smart coating will improve the clinical use of Mg implants. Furthermore, the PEDOT/GO/Drug/Mg system may be developed into self-powered implantable drug delivery devices.


Subject(s)
Coated Materials, Biocompatible/chemistry , Dexamethasone/pharmacology , Drug Liberation , Graphite/chemistry , Magnesium/chemistry , Microglia/drug effects , Polymers/chemistry , Absorbable Implants , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cells, Cultured , Corrosion , Delayed-Action Preparations , Dexamethasone/chemistry , Microglia/metabolism , Rats , Surface Properties
15.
J Neural Eng ; 15(3): 033001, 2018 06.
Article in English | MEDLINE | ID: mdl-29182149

ABSTRACT

OBJECTIVE: Implantable neural electrode devices are important tools for neuroscience research and have an increasing range of clinical applications. However, the intricacies of the biological response after implantation, and their ultimate impact on recording performance, remain challenging to elucidate. Establishing a relationship between the neurobiology and chronic recording performance is confounded by technical challenges related to traditional electrophysiological, material, and histological limitations. This can greatly impact the interpretations of results pertaining to device performance and tissue health surrounding the implant. APPROACH: In this work, electrophysiological activity and immunohistological analysis are compared after controlling for motion artifacts, quiescent neuronal activity, and material failure of devices in order to better understand the relationship between histology and electrophysiological outcomes. MAIN RESULTS: Even after carefully accounting for these factors, the presence of viable neurons and lack of glial scarring does not convey single unit recording performance. SIGNIFICANCE: To better understand the biological factors influencing neural activity, detailed cellular and molecular tissue responses were examined. Decreases in neural activity and blood oxygenation in the tissue surrounding the implant, shift in expression levels of vesicular transporter proteins and ion channels, axon and myelin injury, and interrupted blood flow in nearby capillaries can impact neural activity around implanted neural interfaces. Combined, these tissue changes highlight the need for more comprehensive, basic science research to elucidate the relationship between biology and chronic electrophysiology performance in order to advance neural technologies.


Subject(s)
Brain-Computer Interfaces , Electrodes, Implanted , Neurons/physiology , Sensorimotor Cortex/physiology , Visual Cortex/physiology , Animals , Female , Macaca mulatta , Male , Mice , Mice, Inbred C57BL , Microelectrodes , Microscopy, Fluorescence, Multiphoton/methods , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Sensorimotor Cortex/surgery , Visual Cortex/surgery
16.
J Mater Chem B ; 5(13): 2445-2458, 2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28729901

ABSTRACT

Cocaine is a highly addictive psychostimulant that acts through competitive inhibition of the dopamine transporter. In order to fully understand the region specific neuropathology of cocaine abuse and addiction, it is unequivocally necessary to develop cocaine sensing technology capable of directly measuring real-time cocaine transient events local to different brain regions throughout the pharmacokinetic time course of exposure. We have developed an electrochemical aptamer-based in vivo cocaine sensor on a silicon based neural recording probe platform capable of directly measuring cocaine from discrete brain locations using square wave voltammetry (SWV). The sensitivity of the sensor for cocaine follows a modified exponential Langmuir model relationship and complete aptamer-target binding occurs in < 2 sec and unbinding in < 4 sec. The resulting temporal resolution is a 75X increase from traditional microdialysis sampling methods. When implanted in the rat dorsal striatum, the cocaine sensor exhibits stable SWV signal drift (modeled using a logarithmic exponential equation) and is capable of measuring real-time in vivo response to repeated local cocaine infusion as well as systemic IV cocaine injection. The in vivo sensor is capable of obtaining reproducible measurements over a period approaching 3 hours, after which signal amplitude significantly decreases likely due to tissue encapsulation. Finally, aptamer functionalized neural recording probes successfully detect spontaneous and evoked neural activity in the brain. This dual functionality makes the cocaine sensor a powerful tool capable of monitoring both biochemical and electrophysiological signals with high spatial and temporal resolution.

17.
Acta Biomater ; 53: 46-58, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28185910

ABSTRACT

Chronically implanted neural multi-electrode arrays (MEA) are an essential technology for recording electrical signals from neurons and/or modulating neural activity through stimulation. However, current MEAs, regardless of the type, elicit an inflammatory response that ultimately leads to device failure. Traditionally, rigid materials like tungsten and silicon have been employed to interface with the relatively soft neural tissue. The large stiffness mismatch is thought to exacerbate the inflammatory response. In order to minimize the disparity between the device and the brain, we fabricated novel ultrasoft electrodes consisting of elastomers and conducting polymers with mechanical properties much more similar to those of brain tissue than previous neural implants. In this study, these ultrasoft microelectrodes were inserted and released using a stainless steel shuttle with polyethyleneglycol (PEG) glue. The implanted microwires showed functionality in acute neural stimulation. When implanted for 1 or 8weeks, the novel soft implants demonstrated significantly reduced inflammatory tissue response at week 8 compared to tungsten wires of similar dimension and surface chemistry. Furthermore, a higher degree of cell body distortion was found next to the tungsten implants compared to the polymer implants. Our results support the use of these novel ultrasoft electrodes for long term neural implants. STATEMENT OF SIGNIFICANCE: One critical challenge to the translation of neural recording/stimulation electrode technology to clinically viable devices for brain computer interface (BCI) or deep brain stimulation (DBS) applications is the chronic degradation of device performance due to the inflammatory tissue reaction. While many hypothesize that soft and flexible devices elicit reduced inflammatory tissue responses, there has yet to be a rigorous comparison between soft and stiff implants. We have developed an ultra-soft microelectrode with Young's modulus lower than 1MPa, closely mimicking the brain tissue modulus. Here, we present a rigorous histological comparison of this novel ultrasoft electrode and conventional stiff electrode with the same size, shape and surface chemistry, implanted in rat brains for 1-week and 8-weeks. Significant improvement was observed for ultrasoft electrodes, including inflammatory tissue reaction, electrode-tissue integration as well as mechanical disturbance to nearby neurons. A full spectrum of new techniques were developed in this study, from insertion shuttle to in situ sectioning of the microelectrode to automated cell shape analysis, all of which should contribute new methods to the field. Finally, we showed the electrical functionality of the ultrasoft electrode, demonstrating the potential of flexible neural implant devices for future research and clinical use.


Subject(s)
Biocompatible Materials , Electrodes, Implanted , Microelectrodes , Neurons/physiology , Animals , Biocompatible Materials/adverse effects , Biocompatible Materials/chemistry , Blood-Brain Barrier , Electric Conductivity , Electric Stimulation , Electrodes, Implanted/adverse effects , Foreign-Body Reaction/prevention & control , Inflammation/prevention & control , Male , Materials Testing , Microelectrodes/adverse effects , Polymers , Rats , Rats, Sprague-Dawley , Silicone Elastomers , Subthalamic Nucleus/physiology , Subthalamic Nucleus/surgery , Tungsten/adverse effects
18.
J Mater Chem B ; 5(42): 8417, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-32264509

ABSTRACT

Correction for 'Aptamer-functionalized neural recording electrodes for the direct measurement of cocaine in vivo' by I. Mitch Taylor et al., J. Mater. Chem. B, 2017, 5, 2445-2458.

19.
Biomaterials ; 113: 279-292, 2017 01.
Article in English | MEDLINE | ID: mdl-27837661

ABSTRACT

Implantable neural electrode technologies for chronic neural recordings can restore functional control to paralysis and limb loss victims through brain-machine interfaces. These probes, however, have high failure rates partly due to the biological responses to the probe which generate an inflammatory scar and subsequent neuronal cell death. L1 is a neuronal specific cell adhesion molecule and has been shown to minimize glial scar formation and promote electrode-neuron integration when covalently attached to the surface of neural probes. In this work, the acute microglial response to L1-coated neural probes was evaluated in vivo by implanting coated devices into the cortex of mice with fluorescently labeled microglia, and tracking microglial dynamics with multi-photon microscopy for the ensuing 6 h in order to understand L1's cellular mechanisms of action. Microglia became activated immediately after implantation, extending processes towards both L1-coated and uncoated control probes at similar velocities. After the processes made contact with the probes, microglial processes expanded to cover 47.7% of the control probes' surfaces. For L1-coated probes, however, there was a statistically significant 83% reduction in microglial surface coverage. This effect was sustained through the experiment. At 6 h post-implant, the radius of microglia activation was reduced for the L1 probes by 20%, shifting from 130.0 to 103.5 µm with the coating. Microglia as far as 270 µm from the implant site displayed significantly lower morphological characteristics of activation for the L1 group. These results suggest that the L1 surface treatment works in an acute setting by microglial mediated mechanisms.


Subject(s)
Coated Materials, Biocompatible/chemistry , Electrodes, Implanted , Immobilized Proteins/chemistry , Microglia/cytology , Neural Cell Adhesion Molecule L1/chemistry , Animals , Cell Adhesion , Coated Materials, Biocompatible/adverse effects , Electrodes, Implanted/adverse effects , Foreign-Body Reaction/etiology , Foreign-Body Reaction/prevention & control , Immobilized Proteins/adverse effects , Mice , Mice, Transgenic , Microelectrodes/adverse effects , Microglia/physiology , Microglia/ultrastructure , Neural Cell Adhesion Molecule L1/adverse effects
20.
Acta Biomater ; 48: 530-540, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27867108

ABSTRACT

Magnesium (Mg) is a promising biodegradable implant material because of its appropriate mechanical properties and safe degradation products. However, in vivo corrosion speed and hydrogen gas production need to be controlled for uses in biomedical applications. Here we report the development of a conducting polymer 3,4-ethylenedioxythiphene (PEDOT) and graphene oxide (GO) composite coating as a corrosion control layer. PEDOT/GO was electropolymerized on Mg samples in ethanol media. The coated Mg samples were subjected to various corrosion tests. The PEDOT/GO coating significantly reduced the rate of corrosion as evidenced by lower Mg ion concentration and pH of the corrosion media. In addition, the coating decreased the evolved hydrogen. Electrochemical analysis of the corroding samples showed more positive corrosion potential, a decreased corrosion current, and an increase in the polarization resistance. PEDOT/GO corrosion protection is attributed to three factors; an initial passive layer preventing solution ingress, buildup of negative charges in the film, and formation of corrosion protective Mg phosphate layer through redox coupling with Mg corrosion. To explore the biocompatibility of the coated implants in vitro, corrosion media from PEDOT/GO coated or uncoated Mg samples were exposed to cultured neurons where PEDOT/GO coated samples showed decreased toxicity. These results suggest that PEDOT/GO coating will be an effective treatment for controlling corrosion of Mg based medical implants. STATEMENT OF SIGNIFICANCE: Coating Mg substrates with a PEDOT/GO composite coating showed a significant decrease in corrosion rate. While conducting polymer coatings have been used to prevent corrosion on various metals, there has been little work on the use of these coatings for Mg. Additionally, to our knowledge, there has not been a report of the combined used of conducting polymer and GO as a corrosion control layer. Corrosion control is attributed to an initial barrier layer followed by electrochemical coupling of the PEDOT/GO coating with the substrate to facilitate the formation of a protective phosphate layer. This coupling also resulted in a decrease in hydrogen produced during corrosion, which could further improve the host tissue integration of Mg implants. This work elaborates on the potential for electroactive polymers to serve as corrosion control methods.


Subject(s)
Absorbable Implants , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Coated Materials, Biocompatible/chemistry , Graphite/chemistry , Magnesium/chemistry , Polymers/chemistry , Animals , Cell Death , Corrosion , Dielectric Spectroscopy , Electrochemical Techniques , Hydrogen/analysis , Hydrogen-Ion Concentration , L-Lactate Dehydrogenase/metabolism , Microscopy, Electron, Scanning , Rats , Spectrometry, X-Ray Emission , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...