Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Appl Spectrosc ; : 37028241253860, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767085

ABSTRACT

Current label-free surface-enhanced Raman spectroscopy (SERS) assay for the detection and analysis of organophosphorus pesticides has achieved initial success, but the application still faces constraints of substrate portability and specificity. To this end, this paper demonstrates a method for portable, rapid, and specific detection of low concentrations of fenthion pesticides based on a solid substrate of gold nanoparticle monolayers combined with molecularly imprinted polymers (MIPs). The nano-monolayers were transferred to the surface of mercapto-silicon wafers by interfacial self-assembly technique to form a stable connection with S-Au bonds and, at the same time, prevent nanoparticles from dropping off during the surfactant removal process. Then, the fenthion MIPs were directly generated on the surface of the monolayer film by spin-coating with a pre-polymerization solution and ultraviolet-induced polymerization. Tests showed that the molecular imprint was able to accurately bind to fenthion, but not other molecules, in a mixture of structural analogs, achieving a low concentration detection of 10-8 mol/L. The composite substrate maintained a signal uniformity of a relative standard deviation (RSD) = 7.05% and a batch-to-batch reproducibility of RSD = 10.40%, making it a potential pathway for the extended application of SERS technology.

2.
Chin J Integr Med ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753274

ABSTRACT

OBJECTIVE: To study the effect of Shexiang Tongxin Dropping Pill (STDP) on angiogenesis in diabetic cardiomyopathy mice with coronary microcirculation dysfunction (CMD). METHODS: According to a random number table, 6 of 36 SPF male C57BL/6 mice were randomly selected as the control group, and the remaining 30 mice were injected with streptozotocin intraperitoneally to replicate the type 1 diabetes model. Mice successfully copied the diabetes model were randomly divided into the model group, STDP low-dose group [15 mg/(kg·d)], medium-dose group [30 mg/(kg·d)], high-dose group [60 mg/(kg·d)], and nicorandil group [15 mg/(kg·d)], 6 in each group. The drug was given by continuous gavage for 12 weeks. The cardiac function of mice in each group was detected at the end of the experiment, and coronary flow reserve (CFR) was detected by chest Doppler technique. Pathological changes of myocardium were observed by hematoxylin-eosin staining, collagen fiber deposition was detected by masson staining, the number of myocardial capillaries was detected by platelet endothelial cell adhesion molecule-1 staining, and the degree of myocardial hypertrophy was detected by wheat germ agglutinin staining. The expression of the vascular endothlial growth factor (VEGF)/endothelial nitric oxide synthase (eNOS) signaling pathway-related proteins in myocardial tissue was detected by Western blot. RESULTS: Compared with the model group, medium- and high-dose STDP significantly increased the left ventricular ejection fraction and left ventricular fraction shortening (P<0.01), obviously repaired the disordered cardiac muscle structure, reduced myocardial fibrosis, reduced myocardial cell area, increased capillary density, and increased CFR level (all P<0.01). Western blot showed that high-dose STDP could significantly increase the expression of VEGF and promote the phosphorylation of vascular endothelial growth factor receptor 2, phosphoinositide 3-kinase, protein kinase B, and eNOS (P<0.05 or P<0.01). CONCLUSION: STDP has a definite therapeutic effect on diabetic CMD, and its mechanism may be related to promoting angiogenesis through the VEGF/eNOS signaling pathway.

3.
Front Bioeng Biotechnol ; 12: 1347406, 2024.
Article in English | MEDLINE | ID: mdl-38694622

ABSTRACT

Background: Low-intensity pulsed ultrasound (LIPUS) can accelerate tooth movement and preserve tooth and bone integrity during orthodontic treatment. However, the mechanisms by which LIPUS affects tissue remodeling during orthodontic tooth movement (OTM) remain unclear. Periodontal ligament cells (PDLCs) are pivotal in maintaining periodontal tissue equilibrium when subjected to mechanical stimuli. One notable mechano-sensitive ion channel, Piezo1, can modulate cellular function in response to mechanical cues. This study aimed to elucidate the involvement of Piezo1 in the osteogenic response of force-treated PDLCs when stimulated by LIPUS. Method: After establishing rat OTM models, LIPUS was used to stimulate rats locally. OTM distance and alveolar bone density were assessed using micro-computed tomography, and histological analyses included hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining and immunohistochemical staining. GsMTx4 and Yoda1 were respectively utilized for Piezo1 functional inhibition and activation experiments in rats. We isolated human PDLCs (hPDLCs) in vitro and evaluated the effects of LIPUS on the osteogenic differentiation of force-treated hPDLCs using real-time quantitative PCR, Western blot, alkaline phosphatase and alizarin red staining. Small interfering RNA and Yoda1 were employed to validate the role of Piezo1 in this process. Results: LIPUS promoted osteoclast differentiation and accelerated OTM in rats. Furthermore, LIPUS alleviated alveolar bone resorption under pressure and enhanced osteogenesis of force-treated PDLCs both in vivo and in vitro by downregulating Piezo1 expression. Subsequent administration of GsMTx4 in rats and siPIEZO1 transfection in hPDLCs attenuated the inhibitory effect on osteogenic differentiation under pressure, whereas LIPUS efficacy was partially mitigated. Yoda1 treatment inhibited osteogenic differentiation of hPDLCs, resulting in reduced expression of Collagen Ⅰα1 and osteocalcin in the periodontal ligament. However, LIPUS administration was able to counteract these effects. Conclusion: This research unveils that LIPUS promotes the osteogenesis of force-treated PDLCs via downregulating Piezo1.

4.
World J Stem Cells ; 16(3): 267-286, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38577236

ABSTRACT

BACKGROUND: The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years, which also may lead to some complications such as alveolar bone resorption or tooth root resorption. Low-intensity pulsed ultrasound (LIPUS), a noninvasive physical therapy, has been shown to promote bone fracture healing. It is also reported that LIPUS could reduce the duration of orthodontic treatment; however, how LIPUS regulates the bone metabolism during the orthodontic treatment process is still unclear. AIM: To investigate the effects of LIPUS on bone remodeling in an orthodontic tooth movement (OTM) model and explore the underlying mechanisms. METHODS: A rat model of OTM was established, and alveolar bone remodeling and tooth movement rate were evaluated via micro-computed tomography and staining of tissue sections. In vitro, human bone marrow mesenchymal stem cells (hBMSCs) were isolated to detect their osteogenic differentiation potential under compression and LIPUS stimulation by quantitative reverse transcription-polymerase chain reaction, Western blot, alkaline phosphatase (ALP) staining, and Alizarin red staining. The expression of Yes-associated protein (YAP1), the actin cytoskeleton, and the Lamin A/C nucleoskeleton were detected with or without YAP1 small interfering RNA (siRNA) application via immunofluorescence. RESULTS: The force treatment inhibited the osteogenic differentiation potential of hBMSCs; moreover, the expression of osteogenesis markers, such as type 1 collagen (COL1), runt-related transcription factor 2, ALP, and osteocalcin (OCN), decreased. LIPUS could rescue the osteogenic differentiation of hBMSCs with increased expression of osteogenic marker inhibited by force. Mechanically, the expression of LaminA/C, F-actin, and YAP1 was downregulated after force treatment, which could be rescued by LIPUS. Moreover, the osteogenic differentiation of hBMSCs increased by LIPUS could be attenuated by YAP siRNA treatment. Consistently, LIPUS increased alveolar bone density and decreased vertical bone absorption in vivo. The decreased expression of COL1, OCN, and YAP1 on the compression side of the alveolar bone was partially rescued by LIPUS. CONCLUSION: LIPUS can accelerate tooth movement and reduce alveolar bone resorption by modulating the cytoskeleton-Lamin A/C-YAP axis, which may be a promising strategy to reduce the orthodontic treatment process.

5.
Cell Rep ; 43(5): 114136, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643480

ABSTRACT

Embryos, originating from fertilized eggs, undergo continuous cell division and differentiation, accompanied by dramatic changes in transcription, translation, and metabolism. Chromatin regulators, including transcription factors (TFs), play indispensable roles in regulating these processes. Recently, the trophoblast regulator TFAP2C was identified as crucial in initiating early cell fate decisions. However, Tfap2c transcripts persist in both the inner cell mass and trophectoderm of blastocysts, prompting inquiry into Tfap2c's function in post-lineage establishment. In this study, we delineate the dynamics of TFAP2C during the mouse peri-implantation stage and elucidate its collaboration with the key lineage regulators CDX2 and NANOG. Importantly, we propose that de novo formation of H3K9me3 in the extraembryonic ectoderm during implantation antagonizes TFAP2C binding to crucial developmental genes, thereby maintaining its lineage identity. Together, these results highlight the plasticity of the chromatin environment in designating the genomic binding of highly adaptable lineage-specific TFs and regulating embryonic cell fates.

6.
Dev Cell ; 59(9): 1146-1158.e6, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38574734

ABSTRACT

Transcription factors (TFs) play important roles in early embryonic development, but factors regulating TF action, relationships in signaling cascade, genome-wide localizations, and impacts on cell fate transitions during this process have not been clearly elucidated. In this study, we used uliCUT&RUN-seq to delineate a TFAP2C-centered regulatory network, showing that it involves promoter-enhancer interactions and regulates TEAD4 and KLF5 function to mediate cell polarization. Notably, we found that maternal retinoic acid metabolism regulates TFAP2C expression and function by inducing the active demethylation of SINEs, indicating that the RARG-TFAP2C-TEAD4/KLF5 axis connects the maternal-to-zygotic transition to polarization. Moreover, we found that both genomic imprinting and SNP-transferred genetic information can influence TF positioning to regulate parental gene expressions in a sophisticated manner. In summary, we propose a ternary model of TF regulation in murine embryonic development with TFAP2C as the core element and metabolic, epigenetic, and genetic information as nodes connecting the pathways.


Subject(s)
Gene Expression Regulation, Developmental , Transcription Factor AP-2 , Transcription Factors , Animals , Transcription Factor AP-2/metabolism , Transcription Factor AP-2/genetics , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Female , Embryo Implantation/genetics , Gene Regulatory Networks , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Embryonic Development/genetics , TEA Domain Transcription Factors/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Promoter Regions, Genetic/genetics , Tretinoin/metabolism , Muscle Proteins/metabolism , Muscle Proteins/genetics
7.
Int J Biol Macromol ; 267(Pt 2): 131358, 2024 May.
Article in English | MEDLINE | ID: mdl-38580028

ABSTRACT

Polylactic acid (PLA) nonwovens, recognized as eco-friendly substitutes for petroleum-based synthetic fibers, face a significant challenge due to their inherent flammability. This work addresses this concern by synthesizing a hyperbranched polyphosphoramide flame retardant (TPDT) through a one-step polycondensation process without using solvent and catalyst. TPDT is subsequently applied to PLA nonwovens using a dip-pad finishing technique. Notably, with a mere 7 wt% weight gain of TPDT, the PLA nonwovens exhibit a substantial increase in the limited oxygen index (LOI) value, reaching 32.3 %. Furthermore, the damaged area in the vertical burning test is reduced by approximately 69.2 %. In the cone calorimeter test, 17 wt% weight gain of TPDT results in a 51.4 % decrease in peak heat release rate and a 56.0 % reduction in total heat release compared to the control PLA. Additionally, char residue increases from 1.5 wt% to 31.1 wt% after combustion. The strong affinity between TPDT and PLA molecules persists even after repeated abrasion, ensuring sustained flame retardancy. Importantly, the introduction of TPDT also imparts increased softness to the PLA nonwovens. This work addresses this concern by synthesizing a hyperbranched polyphosphoramide flame retardant (TPDT) through a solvent-free, catalyst-free, and one-step polycondensation process.


Subject(s)
Flame Retardants , Polyesters , Polyesters/chemistry , Flame Retardants/chemical synthesis , Solvents/chemistry , Textiles
8.
Bioresour Technol ; 399: 130611, 2024 May.
Article in English | MEDLINE | ID: mdl-38508282

ABSTRACT

Glucosylglycerate (R-2-O-α-D-glucopyranosyl-glycerate, GG) is a negatively charged compatible solution with versatile functions. Here, an artificial in vitro enzymatic cascade was designed to feasibly and sustainably produce GG from affordable starch and glycerol. First, Spirochaeta thermophila glucosylglycerate phosphorylase (GGP) was carefully selected because of its excellent heterologous expression, specific activity, and thermostability. The optimized two-enzyme cascade, consisting of alpha-glucan phosphorylase (αGP) and GGP, achieved a remarkable 81 % conversion rate from maltodextrin and D-glycerate. Scaling up this cascade resulted in a practical concentration of 58 g/L GG with a 62 % conversion rate based on the added D-glycerate. Additionally, the production of GG from inexpensive starch and glycerol in one-pot using artificial four-enzyme cascade was successfully implemented, which integrates alditol oxidase and catalase with αGP and GGP. Collectively, this sustainable enzymatic cascade demonstrates the feasibility of the practical synthesis of GG and has the potential to produce other glycosides using the phosphorylase-and-phosphorylase paradigm.


Subject(s)
Glycerol , Starch , Glucosides/metabolism , Phosphorylases/metabolism
9.
PeerJ ; 12: e16985, 2024.
Article in English | MEDLINE | ID: mdl-38436009

ABSTRACT

Tillering/branching pattern plays a significant role in determining the structure and diversity of grass, and trimming has been found to induce tillering in turfgrass. Recently, it has been reported that hydrogen peroxide (H2O2) regulates axillary bud development. However, the role of H2O2 in trimming-induced tillering in bermudagrass, a kind of turfgrass, remains unclear. Our study unveils the significant impact of trimming on promoting the sprouting and growth of tiller buds in stolon nodes, along with an increase in the number of tillers in the main stem. This effect is accompanied by spatial-temporal changes in cytokinin and sucrose content, as well as relevant gene expression in axillary buds. In addition, the partial trimming of new-born tillers results in an increase in sucrose and starch reserves in their leaves, which can be attributed to the enhanced photosynthesis capacity. Importantly, trimming promotes a rapid H2O2 burst in the leaves of new-born tillers and axillary stolon buds. Furthermore, exogenous application of H2O2 significantly increases the number of tillers after trimming by affecting the expression of cytokinin-related genes, bolstering photosynthesis potential, energy reserves and antioxidant enzyme activity. Taken together, these results indicate that both endogenous production and exogenous addition of H2O2 enhance the inductive effects of trimming on the tillering process in bermudagrass, thus helping boost energy supply and maintain the redox state in newly formed tillers.


Subject(s)
Cynodon , Hydrogen Peroxide , Oxidation-Reduction , Antioxidants , Cytokinins , Sucrose
10.
Materials (Basel) ; 17(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38399194

ABSTRACT

High-frequency traveling-wave magnetic fields refer to alternating magnetic fields that propagate through space in a wave-like manner at high frequencies. These magnetic fields are characterized by their ability to generate driving forces and induce currents in conductive materials, such as liquids or metals. This article investigates the application and approaches of a unique form of high-frequency traveling-wave magnetic fields to low-conductivity liquids with conductivity ranging from 1 to 102 S/m. Experiments were conducted using four representative electrolytic solutions commonly employed in the chemical industry: sulfuric acid (H2SO4), sodium hydroxide (NaOH), sodium chloride (NaCl), and ionic liquid ([Bmim]BF4). The investigation focuses on the impact of high-frequency magnetic fields on these solutions at the optimal operating point of the system, considering the effects of Joule heating. The findings reveal that the high-frequency traveling magnetic field exerts a significant volumetric force on all four low-conductivity liquids. This technology, characterized by its non-contact and pollution-free nature, high efficiency, large driving volume, and rapid driving speeds (up to several centimeters per second), also provides uniform velocity distribution and notable thermal effects. It holds considerable promise for applications in the chemical industry, metallurgy, and other sectors where enhanced three-phase transfer processes are essential.

11.
Front Cell Infect Microbiol ; 14: 1338508, 2024.
Article in English | MEDLINE | ID: mdl-38390620

ABSTRACT

Objective: Human identical sequences of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) promoted the coronavirus disease 2019 (COVID-19) progression by upregulating hyaluronic acid (HA) via NamiRNA-enhancer network, based on previous experimental research. This study aimed to investigate the predictive value of HA for the severity of SARS-CoV-2 infection in the post-COVID-19 era. Methods: A total of 217 consecutive patients with COVID-19 were enrolled at Beijing Ditan Hospital between July 2023 and October 2023. HA levels were analyzed using biochemical detector. Logistic regression analysis was used to screen independent factors for severe COVID-19. The predictive performance of HA for severe infection was assessed by ROC curve. Furthermore, the relationship between HA levels and COVID-19 severity was investigated using multivariate logistic regression models after adjustment for potential confounders. Results: According to the cut-off value of HA, COVID-19 patients were divided into HA < 90 ng/mL group (80 cases) and HA ≥ 90 ng/mL group (137 cases). High HA levels were positively associated with the severe SARS-CoV-2 infection, including elevated inflammatory indicators, severe lung involvement, prolonged clinical course, and higher incidence of respiratory failure and death (P < 0.05). Logistic regression analysis suggested that HA was an independent predictor of severe COVID-19 (OR = 4.540, 95% CI = 2.105-9.790, P < 0.001). ROC curve analysis showed that the AUC of HA for severe infection was 0.724. HA levels were significantly higher in COVID-19 cases compared to the healthy population (123.9 (82.6, 174.1) vs. 50.5 (37.8, 66.8), P < 0.001), but similar to those with non-SARS-CoV-2 lung infection (121.6 (78.5, 175.6) vs. 106.0 (66.5, 149.7), P = 0.244). We also found that the first COVID-19 infections had higher HA levels (118.8 (79.5, 174.3) vs. 85.0 (61.1, 128.8), P < 0.001) and a higher proportion of severe infection (37.1% vs. 21.3%, P = 0.043) than re-infections. However, HA expression failed to fully return to normal levels with infection recovery (204.7 (152.9, 242.2) vs. 97.0 (69.3, 137.3), P < 0.001). Conclusion: HA was associated with severe SARS-CoV-2 infection and could be used as a novel serum biomarker to predict the risk of COVID-19 progression in the post-COVID-19 era.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Hyaluronic Acid , Lung , ROC Curve
12.
Am J Orthod Dentofacial Orthop ; 165(5): 520-532.e3, 2024 May.
Article in English | MEDLINE | ID: mdl-38276930

ABSTRACT

INTRODUCTION: The objective of this study was to investigate the 2-year postoperative change and influencing factors of the upper airway after mandibular advancement with maxillary setback surgery for patients with a skeletal Class II relationship. METHODS: Fifty-seven participants who underwent mandibular advancement with maxillary setback surgery were enrolled consecutively. Cone-beam computed tomography was performed preoperatively, 3 months postoperatively (T1), and 2 years (T2) postoperatively. All parameters were measured using Dolphin Imaging software (Dolphin Imaging and Management Solutions, Chatsworth, Calif). RESULTS: The total volume (V), minimum cross-sectional area (CSAmin), and glossopharynx increased significantly in both the short-term (V, 13.33%; CSAmin, 33.03%; glossopharynx, 26.73%) and long-term (V, 10.19%; CSAmin, 23.18%; glossopharynx, 18.27%) after the surgery. Mandibular advancement, mandibular width increase, preoperative CSAmin, and body mass index (BMI) significantly affected 2-year postoperative V increases. Mandibular advancement and BMI significantly affected 2-year postoperative glossopharynx increases. Backward movement of point PNS may lead to a reduction of the nasopharynx; however, downward movement of point PNS, upward movement of point A, and increased maxillary width may compensate for this effect by increasing the likelihood of the nasopharynx opening. Furthermore, mandibular body length at T1 is positively associated with relapse rate ([T2 - T1] / T1) of V and CSAmin. CONCLUSIONS: Mandibular advancement amount, mandibular width increase, preoperative CSAmin, and BMI are the 4 factors for long-term V changes. Patients with a longer mandibular body length might have a lower relapse rate.


Subject(s)
Cone-Beam Computed Tomography , Malocclusion, Angle Class II , Mandibular Advancement , Maxilla , Humans , Mandibular Advancement/methods , Malocclusion, Angle Class II/surgery , Malocclusion, Angle Class II/diagnostic imaging , Female , Male , Follow-Up Studies , Maxilla/surgery , Adult , Pharynx/diagnostic imaging , Pharynx/anatomy & histology , Young Adult , Treatment Outcome , Cephalometry , Time Factors , Adolescent
13.
Int J Biol Macromol ; 260(Pt 2): 129641, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262552

ABSTRACT

Cellobionic acid (CBA), a kind of aldobionic acid, offers potential applications in the fields of pharmaceutical, cosmetic, food, and chemical industry. To tackle the high cost of the substrate cellobiose in CBA production using quinoprotein glucose dehydrogenase, this study developed a coenzyme-free and phosphate-balanced in vitro synthetic enzymatic biosystem (ivSEBS) to enable the sustainable CBA synthesis from cost-effective starch in one-pot via the CBA-synthesis module and gluconic acid-supply module. The metabolic fluxes of this artificial biosystem were strengthened using design-build-test-analysis strategy, which involved exquisite pathway design, meticulous enzyme selection, module validation and integration, and optimization of the key enzyme dosage. Under the optimized conditions, a remarkable concentration of 6.2 g/L CBA was achieved from initial 10 g/L maltodextrin with a starch-to-CBA molar conversion rate of 60 %. Taking into account that the biosystem simultaneously accumulated 3.6 g/L of gluconic acid, the maltodextrin utilization rate was calculated to be 93.3 %. Furthermore, a straightforward scaling-up process was performed to evaluate the industrial potential of this enzymatic biosystem, resulting in a yield of 21.2 g/L CBA from 50 g/L maltodextrin. This study presents an artificial ivSEBS for sustainable production of CBA from inexpensive starch, demonstrating an alternative paradigm for biomanufacturing of other aldobionic acids.


Subject(s)
Gluconates , Starch , Disaccharides/metabolism
15.
PeerJ Comput Sci ; 9: e1643, 2023.
Article in English | MEDLINE | ID: mdl-38077548

ABSTRACT

Telematics will be one of the critical technologies in the future intelligent transportation system and establish communication between vehicles and vehicles, vehicles and networks, and vehicles and people. Thus, vehicles can sense mobile environments and make rational driving decisions. Therefore, the safety and efficiency of traffic flow would be enhanced. However, due to the unknown nature and higher complexity of the connected network environments of vehicles, the utilization of conventional optimization theory fails to generate satisfying results. To address the problem, this article proposes a methodology for collaborative transmission for communication regarding the Internet of Vehicles (IoV) with the help of advanced computational algorithms. The article employs a multi-intelligence advanced computational algorithm to construct a collaborative communication transmission mechanism in the telematics communication system model. The proposed algorithm fully considers the vehicle mobility and quality-of-service (QoS) of telematics services within the network slice. It adjusts the slice's radio resource allocation and parameter settings on an expanded time scale to improve the QoS of telematics services and increase the system's long-term revenue. The simulation results show that the proposed algorithm has a more significant performance improvement than conventional algorithms using telematics information transmission. For example, when the same load conditions are under consideration, the total capacity of the vehicle-to-infrastructure (V2I) link optimized by the proposed algorithm is still higher than that of the other three baseline strategies.

16.
Infect Drug Resist ; 16: 7351-7363, 2023.
Article in English | MEDLINE | ID: mdl-38050629

ABSTRACT

Background: Healthcare-associated infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) are now a global public health problem, increasing the burden of disease and public healthcare expenditures in various countries. The aim of this study was to analyse the risk factors for CRKP infections and to develop nomogram models to help clinicians predict CRKP infections at an early stage to facilitate diagnosis and treatment. Methods: The clinical data of patients with Klebsiella pneumoniae (KP) infections in our hospital from January 2018 to January 2023 were collected. 174 patients with CRKP infections and 219 patients with CSKP infections were selected for case-control study. 27 predictors related to CRKP infections were determined. The least absolute shrinkage and selection operator (Lasso) regression was used to screen the characteristic variables, Multivariate logistic regression analysis was performed on the selected variables and a nomogram model was established. The discrimination and calibration of the nomogram model were evaluated by receiver operator curves (ROC) and calibration curves. Results: Six predictive factors of ICU stay, fever time, central venous catheterization time, catheter indwelling time, carbapenem use and tetracycline use screened by lasso regression were included in the logistic regression model, and the nomogram was drawn to visualize the results. The area under ROC curve of training set and validation set was 0.894 (95% CI: 0.857, 0.931) and 0.872 (95% CI: 0.805, 0.939); The results of decision curve analysis also show that the model has good prediction accuracy. Conclusion: This study established a nomogram to predict CRKP infection based on lasso-logistic regression model, which has certain guiding significance for early diagnosis of CRKP infections.

18.
Mol Biotechnol ; 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37843756

ABSTRACT

Plant-parasitic nematodes ingest and convert host phytosterols via dealkylation to cholesterol for both structural and hormonal requirements. The insect 24-dehydrocholesterol reductase (DHCR24) was shown in vitro as a committed enzyme in the dealkylation via chemical blocking. However, an increased brood size and ovulation rate, instead compromised development, were observed in the engineered nematode Caenorhabditis elegans where the DHCR24 gene was knocked down, indicating the relationship between DHCR24 and dealkylation and their function in nematodes remains illusive. In this study, a defect in C. elegans DHCR24 causes impaired growth of the nematode with sitosterol (a major component of phytosterols) as a sole sterol source. Plant sterols with rationally designed structure (null substrates for dealkylation) can't be converted to cholesterol in wild-type worms, and their development was completely halted. This study underpins the essential function of DHCR24 in nematodes and would be beneficial for the development of novel nematocidal strategies.

19.
Biotechnol Biofuels Bioprod ; 16(1): 143, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37759320

ABSTRACT

To improve the CO2 tolerance of a marine microalga Chlorella sp. of which the production capacity has been demonstrated industrially, a mutant library was created and a strain hct53 was screened. Compared to the parental strain, hct53 shows a high CO2 capture capacity, while starch biosynthesis is compromised, with increases in health beneficial metabolites and antioxidant capacity. Global gene expression and genome-wide mutation distribution revealed that transcript choreography was concomitant with more active CO2 sequestration, an increase in the lipid synthesis, and a decrease in the starch and protein synthesis. These results suggest that artificial trait improvement via mutagenesis, couple with multiomics analysis, helps discover genetic switches that induce the bespoke conversion of carbon flow from "redundant metabolites" to valuable ones for functional food.

20.
Cent Eur J Immunol ; 48(2): 81-91, 2023.
Article in English | MEDLINE | ID: mdl-37692024

ABSTRACT

Introduction: The unilateral ureteral obstruction (UUO) model is the most extensively used model to investigate chronic renal fibrosis. Macrophages play a critical role in the UUO model. We aimed to analyze the phenotype of macrophages from different sources activated in vitro and explore the role of M1 macrophages from various sources in UUO. Material and methods: C57BL/6 mice were randomly allocated to five different groups (n = 5 per group): the sham-operated control group, PBS-treated (UUO + PBS) group, bone marrow-derived M1 macrophage-treated (UUO + BM1) group, peritoneal M1 macrophage-treated (UUO + PM1) group, and splenic M1 macrophage-treated (UUO + SPM1) group. After M1 macrophages were injected into the tail vein of UUO-treated mice, renal fibrosis indexes were determined using HE, Masson staining, and α-SMA. Results: Compared to those in the UUO + PBS group, the pathological changes were much more severe in the UUO + BM1, UUO + PM1, and UUO + SPM1 groups. Compared to that in the UUO + PBS group, UUO + BM1 group, and UUO + SPM1 group, the collagen area in the UUO + PM1 group was higher at post-UUO day 5 (p < 0.01). The expression of α-SMA in the UUO + PM1 group was higher than that in the UUO + PBS group, UUO + BM1 group, and UUO + SPM1group (p < 0.001). Conclusions: The M1 macrophages cultured in vitro were reinjected into mice and aggravated kidney injury and fibrosis. Compared with BM1 and SPM1, PM1 demonstrated a stronger effect on inducing renal injury and fibrosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...