Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(15): e202400086, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38329002

ABSTRACT

Fluorine side chain functionalization of non-fullerene acceptors (NFAs) represents an effective strategy for enhancing the performance of organic solar cells (OSCs). However, a knowledge gap persists regarding the relationship between structural changes induced by fluorine functionalization and the resultant impact on device performance. In this work, varying amounts of fluorine atoms were introduced into the outer side chains of Y-series NFAs to construct two acceptors named BTP-F0 and BTP-F5. Theoretical and experimental investigations reveal that side-chain fluorination significantly increase the overall average electrostatic potential (ESP) and charge balance factor, thereby effectively improving the ESP-induced intermolecular electrostatic interaction, and thus precisely tuning the molecular packing and bulk-heterojunction morphology. Therefore, the BTP-F5-based OSC exhibited enhanced crystallinity, domain purity, reduced domain spacing, and optimized phase distribution in the vertical direction. This facilitates exciton diffusion, suppresses charge recombination, and improves charge extraction. Consequently, the promising power conversion efficiency (PCE) of 17.3 % and 19.2 % were achieved in BTP-F5-based binary and ternary devices, respectively, surpassing the PCE of 16.1 % for BTP-F0-based OSCs. This work establishes a structure-performance relationship and demonstrates that fluorine functionalization of the outer side chains of Y-series NFAs is a compelling strategy for achieving ideal phase separation for highly efficient OSCs.

2.
Angew Chem Int Ed Engl ; 63(11): e202318595, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38224211

ABSTRACT

Achieving a more balanced charge transport by morphological control is crucial in reducing bimolecular and trap-assisted recombination and enhancing the critical parameters for efficient organic solar cells (OSCs). Hence, a facile strategy is proposed to reduce the crystallinity difference between donor and acceptor by incorporating a novel multifunctional liquid crystal small molecule (LCSM) BDTPF4-C6 into the binary blend. BDTPF4-C6 is the first LCSM based on a tetrafluorobenzene unit and features a low liquid crystal phase transition temperature and strong self-assembly ability, conducive to regulating the active layer morphology. When BDTPF4-C6 is introduced as a guest molecule into the PM6 : Y6 binary, it exhibits better compatibility with the donor PM6 and primarily resides within the PM6 phase because of the similarity-intermiscibility principle. Moreover, systematic studies revealed that BDTPF4-C6 could be used as a seeding agent for PM6 to enhance its crystallinity, thereby forming a more balanced and favourable charge transport with suppressed charge recombination. Intriguingly, dual Förster resonance energy transfer was observed between the guest molecule and the host donor and acceptor, resulting in an improved current density. This study demonstrates a facile approach to balance the charge mobilities and offers new insights into boosting the efficiency of single-junction OSCs beyond 20 %.

3.
Adv Mater ; 36(18): e2313105, 2024 May.
Article in English | MEDLINE | ID: mdl-38279607

ABSTRACT

Although a suitable vertical phase separation (VPS) morphology is essential for improving charge transport efficiency, reducing charge recombination, and ultimately boosting the efficiency of organic solar cells (OSCs), there is a lack of theoretical guidance on how to achieve the ideal morphology. Herein, a relationship between the molecular structure and the VPS morphology of pseudo-planar heterojunction (PPHJ) OSCs is established by using molecular surface electrostatic potential (ESP) as a bridge. The morphological evolution mechanism is revealed by studying four binary systems with vary electrostatic potential difference (∆ESP) between donors (Ds) and acceptors (As). The findings manifest that as ∆ESP increases, the active layer is more likely to form a well-mixed phase, while a smaller ∆ESP favors VPS morphology. Interestingly, it is also observed that a larger ∆ESP leads to enhanced miscibility between Ds and As, resulting in higher non-radiative energy losses (ΔE3). Based on these discoveries, a ternary PPHJ device is meticulously designed with an appropriate ∆ESP to obtain better VPS morphology and lower ΔE3, and an impressive efficiency of 19.09% is achieved. This work demonstrates that by optimizing the ΔESP, not only the formation of VPS morphology can be controlled, but also energy losses can be reduced, paving the way to further boost OSC performance.

4.
Sensors (Basel) ; 23(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37688027

ABSTRACT

To address the issue of low positioning accuracy of mobile robots in trellis kiwifruit orchards with weak signal environments, this study investigated an outdoor integrated positioning method based on ultra-wideband (UWB), light detection and ranging (LiDAR), and odometry (ODOM). Firstly, a dynamic error correction strategy using the Kalman filter (KF) was proposed to enhance the dynamic positioning accuracy of UWB. Secondly, the particle filter algorithm (PF) was employed to fuse UWB/ODOM/LiDAR measurements, resulting in an extended Kalman filter (EKF) measurement value. Meanwhile, the odometry value served as the predicted value in the EKF. Finally, the predicted and measured values were fused through the EKF to estimate the robot's pose. Simulation results demonstrated that the UWB/ODOM/LiDAR integrated positioning method achieved a mean lateral error of 0.076 m and a root mean square error (RMSE) of 0.098 m. Field tests revealed that compared to standalone UWB positioning, UWB-based KF positioning, and LiDAR/ODOM integrated positioning methods, the proposed approach improved the positioning accuracy by 64.8%, 13.8%, and 38.3%, respectively. Therefore, the proposed integrated positioning method exhibits promising positioning performance in trellis kiwifruit orchards with potential applicability to other orchard environments.

5.
Angew Chem Int Ed Engl ; 62(35): e202304931, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37431837

ABSTRACT

Reducing non-radiative recombination energy loss (ΔE3 ) is one key to boosting the efficiency of organic solar cells. Although the recent studies have indicated that the Y-series asymmetric acceptors-based devices featured relatively low ΔE3 , the understanding of the energy loss mechanism derived from molecular structure change is still lagging behind. Herein, two asymmetric acceptors named BTP-Cl and BTP-2Cl with different terminals were synthesized to make a clear comparative study with the symmetric acceptor BTP-0Cl. Our results suggest that asymmetric acceptors exhibit a larger difference of electrostatic potential (ESP) in terminals and semi-molecular dipole moment, which contributes to form a stronger π-π interaction. Besides, the experimental and theoretical studies reveal that a lower ESP-induced intermolecular interaction can reduce the distribution of PM6 near the interface to enhance the built-in potential and decrease the charge transfer state ratio for asymmetric acceptors. Therefore, the devices achieve a higher exciton dissociation efficiency and lower ΔE3 . This work establishes a structure-performance relationship and provides a new perspective to understand the state-of-the-art asymmetric acceptors.

6.
Adv Mater ; 35(30): e2300820, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37073407

ABSTRACT

Terpolymerization and regioisomerization strategies are combined to develop novel polymer donors to overcome the difficulty of improving organic solar cells (OSCs) performance. Two novel isomeric units, bis(2-hexyldecyl)-2,5-bis(4-chlorothiophen-2-yl)thieno[3,2-b]thiophene-3,6-dicarboxylate (TTO) and bis(2-hexyldecyl) 2,5-bis(3-chlorothiophen-2-yl)thieno[3,2-b]thiophene-3,6-dicarboxylate (TTI), are obtained and incorporated into the PM6 backbone via random copolymerization to form a series of terpolymers. Interestingly, it is found that different chlorine (Cl) substituent positions can significantly change the molecular planarity and electrostatic potential (ESP) owing to the steric hindrance effect of the heavy Cl atom, which leads to different molecular aggregation behaviors and miscibility between the donor and acceptor. The TTO unit features a higher number of multiple S···O non-covalent interactions, more positive ESP, and fewer isomer structures than TTI. As a result, the terpolymer PM6-TTO-10 exhibits a much better molecular coplanarity, stronger crystallinity, more obvious aggregation behavior, and proper phase separation in the blend film, which are conducive to more efficient exciton dissociation and charge transfer. Consequently, the PM6-TTO-10:BTP-eC9-based OSCs achieve a champion power conversion efficiency of 18.37% with an outstanding fill factor of 79.97%, which are among the highest values reported for terpolymer-based OSCs. This work demonstrates that terpolymerization combined with Cl regioisomerization is an efficient approach for achieving high-performance polymer donors.

7.
ACS Omega ; 8(3): 3129-3147, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36713693

ABSTRACT

To study the effect of high temperature and high pressure on the adsorption characteristics of coking coal, Liulin coking coal and Pingdingshan coking coal were selected as the research objects, and isotherm adsorption curves at different temperatures and pressures were obtained by combining isotherm adsorption experiments and molecular dynamics methods. The effect of high temperature and high pressure on the adsorption characteristics of coking coal was analyzed, and an isothermal adsorption model suitable for high-temperature and high-pressure conditions was studied. The results show that the adsorption characteristics of deep coking coal can be well characterized by the molecular dynamics method. Under a supercritical condition, the excess adsorption capacity of methane decreases with the increase of temperature. With the increase of pressure, the excess adsorption capacity rapidly increases in the early stage, temporarily stabilizes in the middle stage, and decreases in the later stage. Based on the classical adsorption model, the adsorption capacity of coking coal under high-temperature and high-pressure environments is fitted. The fitting degree ranges from good to poor. The order is D-R > D-A > L-F >BET > Langmuir, and combined with temperature gradient, pressure gradient, and the D-R adsorption model, it can be seen that after 800 m deep in Liulin Mine and 400 m deep in Pingdingshan Mine, the adsorption capacity of coking coal to methane decreases with the increase of depth.

8.
ACS Omega ; 7(45): 41341-41352, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36406578

ABSTRACT

Coal seam gas pressure is one of the basic parameters for coalbed methane resource exploitation and coal mine gas disaster prevention. However, the present coal seam gas pressure measurement technology requires harsh field measurement conditions and a long testing period. In this study, a novel non-seal gas pressure measurement technology is proposed, and this technology is mainly aimed at three different changes before and after the collection of coal samples and realizes the real gas pressure measurement through the compensation of gas leakage, in situ volume recovery of the coal core, and reservoir temperature simulation. The technique not only can measure the original gas pressure of coal seam quickly and accurately but also does not need to seal the measuring hole. This paper focuses on the study of a key factor that affects the accuracy of non-seal gas pressure measurement: the restoration of in situ volume. Based on this, the influence of four different in situ volume recovery methods on the measurement accuracy is compared with the self-developed non-sealing gas pressure measuring system. Experimental results show that the in situ volume of the coal core cannot be completely restored by stress loading. Although the contact injection method can restore the original volume of the coal core, the pressure recovery error is large due to the replacement and displacement of the gas effect of water and the inclusion of the coal body effect of oil. Interestingly, the combination of stress loading and contact oil injection can not only restore the original volume of the coal core but also minimize the pressure recovery error, which is only less than 10%. Finally, based on the abovementioned experimental results, the in situ volume recovery method of non-seal gas pressure measurement technology is improved. Therefore, the research results of this paper provide a scientific basis for the field application of non-seal gas pressure measurement technology.

9.
Nanoscale ; 14(47): 17714-17724, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36420579

ABSTRACT

A series of random polymers based on the donor polymer PM6 were designed from the perspective of regulating the surface electrostatic potential (ESP) distribution of the polymers and applied in organic solar cells (OSCs). Random polymers with different ESPs were obtained by introducing structural units of polymer PM6 into the polymer structure as the third unit. The simulation results showed that the random polymers feature a wider electron-donating region after the introduction of BDT units, indicating a more efficient charge generation probability. Benefiting from the optimized morphology of the active layer and the stronger interaction between the donor and the acceptor in the active layer, the device exhibited the best charge transport efficiency and lower charge recombination after the introduction of 5% BDT units, and a high power conversion efficiency (PCE) of 16.76% was achieved. In addition, OSC devices based on random polymers incorporating 5% BDT units exhibit excellent device stability. In contrast, the devices based on random polymers after the introduction of BDD units showed a much lower PCE of around 13% due to the inferior charge generation and charge transport. This work not only provides a new perspective for the molecular design of efficient random polymers, but also demonstrates that the OSC devices based on random polymers can still achieve better stability.

10.
Small ; 17(47): e2104451, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34643026

ABSTRACT

The energy loss (Eloss ), especially the nonradiative recombination loss and energetic disorder, needs to be minimized to improve the device performance with a small voltage (VOC ) loss. Urbach energy (EU ) of organic photovoltaic materials is related to energetic disorder, which can predict the Eloss of the corresponding device. Herein, a polymer donor (PBDS-TCl) with Si and Cl functional atoms for organic solar cells (OSCs) is synthesized. It can be found that the VOC and Eloss can be well manipulated by regulation of the energy level of the polymer donor and EU , which is dominated by the morphology. A low energetic disorder with an EU of 23.7 meV, a low driving force of 0.08 eV, and a low Eloss of 0.41 eV are achieved for the PBDS-TCl:Y6-based OSCs. Consequently, an impressive open circuit voltage (VOC ) of 0.92 V is obtained. To the best of knowledge, the VOC value and Eloss are both the record values for the Y6-based device. These results demonstrate that fine-tuning the polymer donor by functional atom modification on the side chain is a promising way to reduce EU and energy loss, as well as obtain small driving force and high VOC for highly efficient OSCs.

11.
Macromol Rapid Commun ; 41(23): e2000454, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33089590

ABSTRACT

Two highly crystalline polymer donors (PBTz4T2C-a, PBTz4T2C-b) with isomers (4T2C-a, 4T2C-b) are synthesized and applied in polymer solar cells. The developed polymers possess proper energy levels and complementary absorption with an efficient electron acceptor IT2F. It is interesting that the photophysical properties, crystallinity, and active layer morphology characteristic can be significantly changed by just slightly regulating the substitution position of the carboxylate groups. A series of simulation calculations of the two isomers are conducted in the geometry and electronic properties to explore the difference induced by the position adjustment of carboxylate groups. The results decipher that 4T2C-b moiety features much stronger intramolecular noncovalent S⋯O interactions compared to that of 4T2C-a, implying a higher coplanarity and much stronger crystallinity, and leading to excessive phase separation in PBTz4T2C-b:IT2F blend film. In contrast, PBTz4T2C-a with 4T2C-a moiety exhibits suitable crystallinity with a lower the highest occupied molecular orbital level, higher film absorption coefficient, and charge mobilities, resulting in a much higher power conversion efficiency of 11.02%. This research demonstrates that the molecular conformation is of great importance to be considered for developing high-performance polymer donors.


Subject(s)
Solar Energy , Isomerism , Polymers
12.
Sensors (Basel) ; 20(12)2020 Jun 14.
Article in English | MEDLINE | ID: mdl-32545849

ABSTRACT

During the process of automated crop picking, the two hand-eye coordination operation systems, namely "eye to hand" and "eye in hand" have their respective advantages and disadvantages. It is challenging to simultaneously consider both the operational accuracy and the speed of a manipulator. In response to this problem, this study constructs a "global-local" visual servo picking system based on a prototype of a picking robot to provide a global field of vision (through binocular vision) and carry out the picking operation using the monocular visual servo. Using tomato picking as an example, experiments were conducted to obtain the accuracies of judgment and range of fruit maturity, and the scenario of fruit-bearing was simulated over an area where the operation was ongoing to examine the rate of success of the system in terms of continuous fruit picking. The results show that the global-local visual servo picking system had an average accuracy of correctly judging fruit maturity of 92.8%, average error of fruit distance measurement in the range 0.485 cm, average time for continuous fruit picking of 20.06 s, and average success rate of picking of 92.45%.

13.
Nat Commun ; 11(1): 3016, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32541859

ABSTRACT

The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible perovskite solar cells (PSCs). The degradation is attributed to the brittleness and discrepancy of perovskite crystal growth upon different substrates. Inspired by robust crystallization and flexible structure of vertebrae, herein, we employ a conductive and glued polymer between indium tin oxide and perovskite layers, which simultaneously facilitates oriented crystallization of perovskite and sticks the devices. With the results of experimental characterizations and theoretical simulations, this bionic interface layer accurately controls the crystallization and acts as an adhesive. The flexible PSCs achieve the power conversion efficiencies of 19.87% and 17.55% at effective areas of 1.01 cm2 and 31.20 cm2 respectively, retaining over 85% of original efficiency after 7000 narrow bending cycles with negligible angular dependence. Finally, the modules are assembled into a wearable solar-power source, enabling the upscaling of flexible electronics.

14.
PLoS One ; 14(7): e0219803, 2019.
Article in English | MEDLINE | ID: mdl-31318930

ABSTRACT

This paper attempts to design an automated, efficient and intelligent tomato grading method that facilitates the graded selling of the fruit. Based on machine vision, the color images of tomatoes with different morphologies were studied, and the color, shape and size were selected as the key features. On this basis, an automated grading classifier was created based on the surface features of tomatoes, and a grading platform was set up to verify the effect of the classifier. Specifically, the Hue value distributions of tomatoes with different maturities were investigated, and the Hue value ranges were determined for mature, semi-mature and immature tomatoes, producing the color classifier. Next, the first-order Fourier descriptor (1D- FD) was adopted to describe the radius sequence of tomato contour, and an equation was established to compute the irregularity of tomato contour, creating the shape classifier. After that, a linear regression equation was constructed to reflect the relationship between the transverse diameters of actual tomatoes and tomato images, and a classifier between large, medium and small tomatoes was produced based on the transverse diameter. Finally, a comprehensive tomato classifier was built based on the color, shape and size diameters. The experimental results show that the mean grading accuracy of the proposed method was 90.7%. This means our method can achieve automated real-time grading of tomatoes.


Subject(s)
Machine Learning , Phenotype , Solanum lycopersicum/classification , Algorithms , Humans , Reproducibility of Results
15.
Onco Targets Ther ; 11: 1521-1528, 2018.
Article in English | MEDLINE | ID: mdl-29588604

ABSTRACT

PURPOSE: This study reports a case of primary mucinous carcinoma of the thyroid gland with signet-ring-cell differentiation, and reviews the literature to evaluate its real incidence and the prognosis of these patients. PATIENTS AND METHODS: A 74-year-old Chinese woman, presenting with a mass in the right lobe of thyroid gland, came to the hospital. Computed tomography revealed a mass in the right lobe of the thyroid gland, accompanied with right neck lymphadenectasis and airway deviation caused by tumor compression. Thyroid imaging suggested a thyroid malignant tumor and suspicious lymph node metastasis. Histologically, the tumor was characterized by the tumor cells arranged in small nests or trabeculae with an abundant extracellular mucoid matrix. The tumor cells formed diffuse invasion among thyroid follicles. In the peripheral regions, prominent signet-ring-cells formed a sheet-like structure and extended into the extrathyroidal fat tissue. The tumor cells were diffusely positive for thyroid transcription factor-1 (TTF-1) and PAX8, while they were focally positive for pan-cytokeratin (AE1/AE3) and weakly expressed thyroglobulin. RESULTS: Based on the histological features and immunohistochemical profile, a diagnosis of primary mucinous carcinoma of the thyroid gland with signet-ring-cell differentiation was rendered. CONCLUSION: Using a panel of immunohistochemical markers may be helpful for differential diagnosis and for determining whether the tumor is primary or not.

16.
Int J Clin Exp Pathol ; 11(5): 2852-2858, 2018.
Article in English | MEDLINE | ID: mdl-31938406

ABSTRACT

We report a case of lung adenocarcinoma metastasizing to intracranial meningioma as a first clinical manifestation. Surgeons should be aware of this rare lesion. A 70-year-old Chinese woman was admitted to our hospital with a complaint of progressive left hemiparesis, predominantly of the upper extremity, for 20 days. Computed tomography (CT) revealed a mass on the right side of the right occipital cerebral falx. The subsequent magnetic resonance imaging (MRI) showed an oval mass with equal intensity on T1 weighted imaging (WI) and heterogeneous equal intensity on T2 WI. Within the tumor, a low T1 signal lesion was moderately enhanced after enhanced scanning with a relative boundary. Neuroimaging indicated a meningioma and the patient underwent a total mass resection. Formalin-embedded sections demonstrated two histologically distinct tumors (meningioma and adenocarcinoma) simultaneously in the same lesion without an intermediate transitional zone. Meanwhile, immunohistochemical (IHC) staining showed two distinctly different immunophenotypes in these two tumors and indicated that the component of adenocarcinoma might be a metastasis from a primary lung cancer. Therefore, a subsequent pulmonary CT scan was performed and found a mass at the tip of the upper lobe of the right lung. Fine-needle aspiration biopsy demonstrated an adenocarcinoma. The primary lung adenocarcinoma shared similar histologic morphology with that of the intracranial metastatic site. The final diagnosis waslung adenocarcinoma metastasizing to intracranial benign meningioma. The patient died of heart failure 2 weeks after surgery.

SELECTION OF CITATIONS
SEARCH DETAIL
...