Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 458
Filter
1.
Biochem Biophys Res Commun ; 717: 150028, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38714016

ABSTRACT

Mycoplasma pneumoniae (MP),as the most commonly infected respiratory pathogen in community-acquired pneumonia in preschool children,has becoming a prominent factor affecting children's respiratory health.Currently, there is a lack of easy, rapid, and accurate laboratory testing program for MP infection, which causes comparatively difficulty for clinical diagnostic.Here,we utilize loop-mediated isothermal amplification (LAMP) to amplify and characterize the P1 gene of MP, combined with nucleic acid lateral flow (NALF) for fast and visuallized detection of MP.Furthermore, we evaluated and analyzed the sensitivity, specificity and methodological consistency of the method.The results showed that the limit of detection(LoD) of MP-LAMP-NALF assay was down to 100 copys per reaction and there was no cross-reactivity with other pathogens infected the respiratory system. The concordance rate between MP-LAMP-NALF assay with quantitative real-time PCR was 94.3 %,which exhibiting excellent testing performance.We make superior the turnaround time of the MP-LAMP-NALF assay, which takes only about 50 min. In addition, there is no need for precision instruments and no restriction on the laboratory site.Collectively, LAMP-NALF assay targeting the P1 gene for Mycoplasma pneumoniae detection was a easy, precise and visual test which could be widely applied in outpatient and emergency departments or primary hospitals.When further optimized, it could be used as "point-of-care testing" of pathogens or multiple testing for pathogens.

2.
Nat Hum Behav ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740988

ABSTRACT

The Han Chinese history is shaped by substantial demographic activities and sociocultural transmissions. However, it remains challenging to assess the contributions of demic and cultural diffusion to Han culture and language, primarily due to the lack of rigorous examination of genetic-linguistic congruence. Here we digitized a large-scale linguistic inventory comprising 1,018 lexical traits across 926 dialect varieties. Using phylogenetic analysis and admixture inference, we revealed a north-south gradient of lexical differences that probably resulted from historical migrations. Furthermore, we quantified extensive horizontal language transfers and pinpointed central China as a dialectal melting pot. Integrating genetic data from 30,408 Han Chinese individuals, we compared the lexical and genetic landscapes across 26 provinces. Our results support a hybrid model where demic diffusion predominantly impacts central China, while cultural diffusion and language assimilation occur in southwestern and coastal regions, respectively. This interdisciplinary study sheds light on the complex social-genetic history of the Han Chinese.

3.
IEEE Trans Med Imaging ; PP2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656866

ABSTRACT

Individual brains vary greatly in morphology, connectivity and organization. Individualized brain parcellation is capable of precisely localizing subject-specific functional regions. However, most individualization approaches examined single modality of data and have not generalized to nonhuman primates. The present study proposed a novel multimodal connectivity-based individual parcellation (MCIP) method, which optimizes within-region homogeneity, spatial continuity and similarity to a reference atlas with the fusion of personal functional and anatomical connectivity. Comprehensive evaluation demonstrated that MCIP outperformed state-of-the-art multimodal individualization methods in terms of functional and anatomical homogeneity, predictability of cognitive measures, heritability, reproducibility and generalizability across species. Comparative investigation showed a higher topographic variability in humans than that in macaques. Therefore, MCIP provides improved accurate and reliable mapping of brain functional regions over existing methods at an individual level across species, and could facilitate comparative and translational neuroscience research.

4.
Org Lett ; 26(16): 3401-3406, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38607850

ABSTRACT

Bisboronic esters are critical compounds in various research fields, including drug discovery, chemical biology, and material sciences. Currently, the bisboronic esters with reactive functional groups are difficult to synthesize; this is partially due to the lack of a robust method to produce these products with diverse structures and various functional groups at specific locations. To overcome this issue, this study introduced a Ni-catalysis approach to produce bisboronic esters efficiently via cross-coupling and homocoupling using readily available halogenated boronic esters as the starting material under mild reaction conditions. This newly developed strategy enables Csp2-Csp2, Csp3-Csp3, and Csp2-Csp3 couplings, demonstrating a broad substrate scope and excellent compatibility with various functional groups.

5.
Chemosphere ; 355: 141822, 2024 May.
Article in English | MEDLINE | ID: mdl-38561157

ABSTRACT

The environmental occurrence of organophosphorus flame retardants (OPFRs) is receiving increasing attention. However, their distribution in the Xiangjiang River, an important tributary in the middle reaches of the Yangtze River, is still uncharacterized, and the potential factors influencing their distribution have not been adequately surveyed. In this study, the occurrence of OPFRs in the Xiangjiang River was comprehensively investigated from upstream to downstream seasonally. Fourteen OPFRs were detected in the sampling area, with a total concentration (∑OPFRs) ranging from 3.16 to 462 ng/L, among which tris(1-chloro-2-propyl) phosphate was identified as the primary pollutant (ND - 379 ng/L). Specifically, ∑OPFRs were significantly lower in the wet season than in the dry season, which may be due to the dilution effect of river flow and enhanced volatilization caused by higher water temperatures. Additionally, Changsha (during the dry season) and Zhuzhou (during the wet season) exhibited higher pollution levels than other cities. According to the Redundancy analysis, water quality parameters accounted for 35.7% of the variation in the occurrence of OPFRs, in which temperature, ammonia nitrogen content, dissolved oxygen, and chemical oxygen demand were identified as the potential influencing factors, accounting for 28.1%, 27.2%, 24.1%, and 11.5% of the total variation, respectively. The results of the Positive Matrix Factorization analysis revealed that transport and industrial emissions were the major sources of OPFRs in Xiangjiang River. In addition, there were no high-ecological risk cases for any individual OPFRs, although tris(2-ethylhexyl) phosphate and tributoxyethyl phosphate presented a low-to-medium risk level. And the results of mixture risk quotients indicated that medium-risk sites were concentrated in the Chang-Zhu-Tan region. This study enriches the global data of OPFRs pollution and contributes to the scientific management and control of pollution.


Subject(s)
Flame Retardants , Organophosphorus Compounds , Organophosphorus Compounds/analysis , Flame Retardants/analysis , Environmental Exposure/analysis , Phosphates/analysis , Water Quality , Organophosphates/analysis
6.
J Neurosci Res ; 102(4): e25325, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38562056

ABSTRACT

Brain states (wake, sleep, general anesthesia, etc.) are profoundly associated with the spatiotemporal dynamics of brain oscillations. Previous studies showed that the EEG alpha power shifted from the occipital cortex to the frontal cortex (alpha anteriorization) after being induced into a state of general anesthesia via propofol. The sleep research literature suggests that slow waves and sleep spindles are generated locally and propagated gradually to different brain regions. Since sleep and general anesthesia are conceptualized under the same framework of consciousness, the present study examines whether alpha anteriorization similarly occurs during sleep and how the EEG power in other frequency bands changes during different sleep stages. The results from the analysis of three polysomnography datasets of 234 participants show consistent alpha anteriorization during the sleep stages N2 and N3, beta anteriorization during stage REM, and theta posteriorization during stages N2 and N3. Although it is known that the neural circuits responsible for sleep are not exactly the same for general anesthesia, the findings of alpha anteriorization in this study suggest that, at macro level, the circuits for alpha oscillations are organized in the similar cortical areas. The spatial shifts of EEG power in different frequency bands during sleep may offer meaningful neurophysiological markers for the level of consciousness.


Subject(s)
Electroencephalography , Sleep, Slow-Wave , Humans , Electroencephalography/methods , Sleep, Slow-Wave/physiology , Sleep/physiology , Sleep Stages/physiology , Polysomnography
7.
Sci Bull (Beijing) ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38580551

ABSTRACT

The rhesus macaque (Macaca mulatta) is a crucial experimental animal that shares many genetic, brain organizational, and behavioral characteristics with humans. A macaque brain atlas is fundamental to biomedical and evolutionary research. However, even though connectivity is vital for understanding brain functions, a connectivity-based whole-brain atlas of the macaque has not previously been made. In this study, we created a new whole-brain map, the Macaque Brainnetome Atlas (MacBNA), based on the anatomical connectivity profiles provided by high angular and spatial resolution ex vivo diffusion MRI data. The new atlas consists of 248 cortical and 56 subcortical regions as well as their structural and functional connections. The parcellation and the diffusion-based tractography were evaluated with invasive neuronal-tracing and Nissl-stained images. As a demonstrative application, the structural connectivity divergence between macaque and human brains was mapped using the Brainnetome atlases of those two species to uncover the genetic underpinnings of the evolutionary changes in brain structure. The resulting resource includes: (1) the thoroughly delineated Macaque Brainnetome Atlas (MacBNA), (2) regional connectivity profiles, (3) the postmortem high-resolution macaque diffusion and T2-weighted MRI dataset (Brainnetome-8), and (4) multi-contrast MRI, neuronal-tracing, and histological images collected from a single macaque. MacBNA can serve as a common reference frame for mapping multifaceted features across modalities and spatial scales and for integrative investigation and characterization of brain organization and function. Therefore, it will enrich the collaborative resource platform for nonhuman primates and facilitate translational and comparative neuroscience research.

8.
Eur J Oral Sci ; 132(3): e12978, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38459610

ABSTRACT

This study aimed to compare clinical benefits of autologous platelet concentrate with other periodontal regenerative approaches in intrabony defects. An electronic and hand search of studies up to December 2022 was conducted. Randomized controlled trials with at least 6 months of follow-up were identified to compare autologous platelet concentrates with enamel matrix derivative, bone graft, guided tissue regeneration, and open-flap debridement. All approaches involved papilla preservation flap surgery. The outcomes included probing depth reduction, clinical attachment level gain, linear bone fill, and safety. A network meta-analysis and meta-regression were performed. Fifty-seven studies were included in five network meta-analyses. Autologous platelets concentrate and its adjunct treatments achieved significantly greater clinical and radiographic parameters than did open-flap debridement, and had comparable or better performance than other regenerative treatments. Platelet-rich fibrin showed superiority over platelet-rich plasma in probing depth reduction at 6-month follow-up. Minimal pain and improved wound healing were observed in the treatments with autologous platelet concentrate. Meta-regression showed that deeper baseline intrabony defects resulted in larger probing depth reductions, while smoking impaired the effectiveness of regenerative surgeries. Minimal invasive flap designs led to less effect of regenerative materials. Autologous platelet concentrate is a promising biomaterial in periodontal regeneration due to its convenience, safety, and biocompatibility characteristics.


Subject(s)
Alveolar Bone Loss , Guided Tissue Regeneration, Periodontal , Network Meta-Analysis , Randomized Controlled Trials as Topic , Humans , Alveolar Bone Loss/surgery , Alveolar Bone Loss/therapy , Guided Tissue Regeneration, Periodontal/methods , Platelet-Rich Plasma , Platelet-Rich Fibrin , Blood Platelets , Bone Transplantation/methods , Surgical Flaps , Treatment Outcome
9.
Neural Plast ; 2024: 5599046, 2024.
Article in English | MEDLINE | ID: mdl-38529366

ABSTRACT

Low back pain (LBP) is a leading cause of global disabilities. Numerous molecular, cellular, and anatomical factors are implicated in LBP. Current issues regarding neurologic alterations in LBP have focused on the reorganization of peripheral nerve and spinal cord, but neural mechanisms of exactly what LBP impacts on the brain required further researches. Based on existing clinical studies that chronic pain problems were accompanying alterations in brain structures and functions, researchers proposed logical conjectures that similar alterations occur in LBP patients as well. With recent extensive studies carried out using noninvasive neuroimaging technique, increasing number of abnormalities and alterations has been identified. Here, we reviewed brain alterations including white matters, grey matters, and neural circuits between brain areas, which are involved in chronic LBP. Moreover, brain structural and functional connectivity abnormalities are correlated to the happening and transition of LBP. The negative emotions related to back pain indicate possible alterations in emotional brain regions. Thus, the aim of this review is to summarize current findings on the alterations corresponding to LBP in the brain. It will not only further our understanding of etiology of LBP and understanding of negative emotions accompanying with back pain but also provide ideas and basis for new accesses to the diagnosis, treatment, and rehabilitation afterward based on integral medicine.


Subject(s)
Low Back Pain , Humans , Brain/diagnostic imaging , Emotions , Spinal Cord
10.
Talanta ; 273: 125879, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38490022

ABSTRACT

In order to improve the living standards of diabetes patients and reduce the negative health effects of this disease, the medical community has been actively searching for more effective treatments. In recent years, an artificial pancreas has emerged as an important approach to managing diabetes. Despite these recent advances, meeting the requirements for miniaturized size, accurate sensing and large-volume pumping capability remains a great challenge. Here, we present a novel miniaturized artificial pancreas based on a long microtube sensor integrated with an ultrasonic pump. Our device meets the requirements of achieving both accurate sensing and high pumping capacity. The artificial pancreas is constructed based on a long microtube that is low cost, painless and simple to operate, where the exterior of the microtube is fabricated as a glucose sensor for detecting diabetes and the interior of the microtube is used as a channel for delivering insulin through an ultrasonic pump. This work successfully achieved closed-loop control of blood glucose and treatment of diabetes in rats. It is expected that this work can open up new methodologies for the development of microsystems, and advance the management approach for diabetes patients.


Subject(s)
Diabetes Mellitus, Type 1 , Pancreas, Artificial , Wearable Electronic Devices , Humans , Animals , Rats , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 1/drug therapy , Ultrasonics , Insulin , Blood Glucose
11.
Synth Syst Biotechnol ; 9(1): 152-158, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38328736

ABSTRACT

Lactococcus lactis and Streptococcus thermophilus are considered as ideal chassis of engineered probiotics, while food-grade genetic tools are limited in those strains. Here, a Zn2+-controlled gene expression (ZICE) system was identified in the genome of S. thermophilus CGMCC7.179, including a transcriptional regulator sczAst and a promoter region of cation transporter czcD (PczcDst). Specific binding of the SczAst to the palindromic sequences in PczcDst was demonstrated by EMSA analysis, suggesting the regulation role of SczAst on PczcDst. To evaluate their possibility to control gene expression in vivo, the sczAst-PczcDst was employed to drive the expression of green fluorescence protein (GFP) gene in L. lactis NZ9000 and S. thermophilus CGMCC7.179, respectively. Both of the transformants could express GFP under Zn2+ induction, while no fluorescence without Zn2+ addition. For optimal conditions, Zn2+ was used at a final concentration of 0.8 mM in L. lactis and 0.16 mM in S. thermophilus at OD600 close to 0.4, and omitting yeast extract powder in the medium unexpectedly improved GFP expression level by 2.2-fold. With the help of the ZICE system, engineered L. lactis and S. thermophilus strains were constructed to secret cytokine interleukin-10 (IL-10) with immunogenicity, and the IL-10 content in the supernatant of the engineered L. lactis was 59.37 % of that under the nisin controlled expression system. This study provided a tightly controlled expression system by the food-grade inducer Zn2+, having potential in development of engineered probiotics.

12.
Discov Med ; 36(181): 308-322, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38409836

ABSTRACT

BACKGROUND: Pericytes (PCs), the critical components of vessels, are implicated in wound repair. This study aimed to explore the roles of PCs in wound healing and angiogenesis. METHODS: Skin PCs and human dermal microvascular endothelial cells (HDMECs) were isolated from patients' upper eyelid skin. Immunofluorescence staining was used to characterize the morphology of PCs. Tube formation and transwell chemotaxis assays were performed to explore PC's tube-forming capability and chemotaxis. Finally, we investigated the effects of PCs and endothelial cells on wound repair using skin wound of a rat model. RESULTS: Skin PCs exhibited a double-protrusion structure and characteristic antigen expression of neural/glial antigen 2 (NG2)+/platelet-derived growth factor receptor-ß (PDGFR-ß)+/alpha-smooth muscle actin (α-SMA)+/CD31-. Skin PCs could directly form lumen-like structures in a two dimensional (2D) culture environment, and mild hypoxia and starvation promoted the lumen-like structure formation. Furthermore, skin PCs quickly formed more stable lumen-like structures than HDMECs in matrigel, and they recruited HDMECs in a three dimensional (3D) culture environment. Transwell chemotaxis assay showed that PCs and HDMECs were chemotactic to each other. PCs could develop lumen-like structures in the skin wounds of rat models. The number of PCs mounted in wounded skin was compared to normal skin. The ratio of PCs to endothelial cells gradually increased after skin injury and reached its maximum on the 3rd day. CONCLUSIONS: Skin PCs have an excellent tube-forming capability and chemotaxis to endothelial cells. PCs might promote wound repair by recruiting endothelial cells.


Subject(s)
Endothelial Cells , Pericytes , Humans , Rats , Animals , Pericytes/metabolism , Chemotaxis , Skin , Wound Healing/physiology
13.
Pharm Stat ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317373

ABSTRACT

In recently conducted phase III trials in a rare disease area, patients received monthly treatment at a high dose of the drug, which targets to lower a specific biomarker level, closely associated with the efficacy endpoint, to around 10% across patients. Although this high dose demonstrated strong efficacy, treatments were withheld due to the reports of serious adverse events. Dosing in these studies were later resumed at a reduced dosage which targets to lower the biomarker level to 15%-35% across patients. Two questions arose after this disruption. The first is whether the efficacy of this revised regimen as measured by the reduction in annualized event rate is adequate to support the continuation of the development and the second is whether the potential bias due to the loss of patients during this dosing gap process can be gauged. To address these questions, we built a prediction model that quantitatively characterizes biomarker vs. endpoint relationship and predicts efficacy at the 15%-35% range of the biomarker level using the available data from the original high dose. This model predicts favorable event rate in the target biomarker level and shows that the bias due to the loss of patients is limited. These results support the continued development of the revised regimen, however, given the limitation of the data available, this prediction is planned to be validated further when data under the revised regimen become available.

14.
Chem Commun (Camb) ; 60(22): 3035-3038, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38348672

ABSTRACT

An effective synthetic approach for various 1,2,2-triarylethanones from triaryl substituted alkenes has been developed via an electrochemical Wacker-type oxygenation with O2 as the sole oxygen source. It presents the first instance of the Wacker-type oxidation expanding its substrate scope to trisubstituted alkenes. The approach is transition-metal-free, compatible with various functional groups, and can be carried out under mild conditions resulting in satisfactory yields. Mechanistic experiments suggest the CO bond formation occurs through reactions between cationic carbon species and the superoxide radical, which involves the 1,2-shift of the electron-rich substituent.

15.
Transl Res ; 267: 10-24, 2024 May.
Article in English | MEDLINE | ID: mdl-38302394

ABSTRACT

Cardiac fibrosis under chronic pressure overload is an end-stage adverse remodeling of heart. However, current heart failure treatments barely focus on anti-fibrosis and the effects are limited. We aimed to seek for a cardiac abundant and cardiac fibrosis specific piRNA, exploring its underlying mechanism and therapeutic potential. Whole transcriptome sequencing and the following verification experiments identified a highly upregulated piRNA (piRNA-000691) in transverse aortic constriction (TAC) mice, TAC pig, and heart failure human samples, which was abundant in heart and specifically expressed in cardiac fibroblasts. CFRPi was gradually increased along with the progression of heart failure, which was illustrated to promote cardiac fibrosis by gain- and loss-of-function experiments in vitro and in vivo. Knockdown of CFRPi in mice alleviated cardiac fibrosis, reversed decline of systolic and diastolic functions from TAC 6 weeks to 8 weeks. Mechanistically, CFRPi inhibited APLN, a protective peptide that increased in early response and became exhausted at late stage. Knockdown of APLN in vitro notably aggravated cardiac fibroblasts activation and proliferation. In vitro and in vivo evidence both indicated Pi3k-AKT-mTOR as the downstream effector pathway of CFRPi-APLN interaction. Collectively, we here identified CFPPi as a heart abundant and cardiac fibrosis specific piRNA. Targeting CFRPi resulted in a sustainable increase of APLN and showed promising therapeutical prospect to alleviate fibrosis, rescue late-stage cardiac dysfunction, and prevent heart failure.


Subject(s)
Cardiomyopathies , Heart Failure , Mice , Humans , Animals , Swine , Piwi-Interacting RNA , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Phosphatidylinositol 3-Kinases/therapeutic use , Signal Transduction , Heart Failure/genetics , Heart Failure/metabolism , Cardiomyopathies/metabolism , Fibroblasts/pathology , Fibrosis , Mice, Inbred C57BL , Ventricular Remodeling , Myocardium/pathology
16.
J Xray Sci Technol ; 32(2): 285-301, 2024.
Article in English | MEDLINE | ID: mdl-38217630

ABSTRACT

Diabetic retinopathy (DR) is one of the leading causes of blindness. However, because the data distribution of classes is not always balanced, it is challenging for automated early DR detection using deep learning techniques. In this paper, we propose an adaptive weighted ensemble learning method for DR detection based on optical coherence tomography (OCT) images. Specifically, we develop an ensemble learning model based on three advanced deep learning models for higher performance. To better utilize the cues implied in these base models, a novel decision fusion scheme is proposed based on the Bayesian theory in terms of the key evaluation indicators, to dynamically adjust the weighting distribution of base models to alleviate the negative effects potentially caused by the problem of unbalanced data size. Extensive experiments are performed on two public datasets to verify the effectiveness of the proposed method. A quadratic weighted kappa of 0.8487 and an accuracy of 0.9343 on the DRAC2022 dataset, and a quadratic weighted kappa of 0.9007 and an accuracy of 0.8956 on the APTOS2019 dataset are obtained, respectively. The results demonstrate that our method has the ability to enhance the ovearall performance of DR detection on OCT images.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Humans , Diabetic Retinopathy/diagnostic imaging , Bayes Theorem , Tomography, Optical Coherence/methods , Machine Learning
17.
Comput Biol Med ; 170: 107996, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266465

ABSTRACT

PURPOSE: Cerebrovascular segmentation and quantification of vascular morphological features in humans and rhesus monkeys are essential for prevention, diagnosis, and treatment of brain diseases. However, current automated whole-brain vessel segmentation methods are often not generalizable to independent datasets, limiting their usefulness in real-world environments with their heterogeneity in participants, scanners, and species. MATERIALS AND METHODS: In this study, we proposed an automated, accurate and generalizable segmentation method for magnetic resonance angiography images called FFCM-MRF. This method integrated fast fuzzy c-means clustering and Markov random field optimization by vessel shape priors and spatial constraints. We used a total of 123 human and 44 macaque MRA images scanned at 1.5 T, 3 T, and 7 T MRI from 9 datasets to develop and validate the method. RESULTS: FFCM-MRF achieved average Dice similarity coefficients ranging from 69.16 % to 89.63 % across multiple independent datasets, with improvements ranging from 3.24 % to 7.3 % compared to state-of-the-art methods. Quantitative analysis showed that FFCM-MRF can accurately segment major arteries in the Circle of Willis at the base of the brain and small distal pial arteries while effectively reducing noise. Test-retest analysis showed that the model yielded high vascular volume and diameter reliability. CONCLUSIONS: Our results have demonstrated that FFCM-MRF is highly accurate and reliable and largely independent of variations in field strength, scanner platforms, acquisition parameters, and species. The macaque MRA data and user-friendly open-source toolbox are freely available at OpenNeuro and GitHub to facilitate studies of imaging biomarkers for cerebrovascular and neurodegenerative diseases.


Subject(s)
Magnetic Resonance Angiography , Magnetic Resonance Imaging , Humans , Animals , Magnetic Resonance Angiography/methods , Macaca mulatta , Reproducibility of Results , Brain/diagnostic imaging , Brain/blood supply , Algorithms
18.
Chem Biol Interact ; 390: 110875, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38242274

ABSTRACT

Pyroptosis, a type of programmed cell death, is characterized by cell swelling with bubbles, and the release of inflammatory cell cytokines. Piperlongumine (PL) is a natural bioactive product extracted from Piper longum L, which can effectively exert anti-tumor activities in cancer. However, the effects and the exact molecular mechanisms of PL in esophageal squamous cell carcinoma (ESCC) remain unclear. This research aimed to investigate the role and mechanism of PL on ESCC in vitro and in vivo. In vitro, the MTT results showed that the IC50 of PL in ESCC cells was 28.55 µM. Moreover, PL significantly suppressed malignant behavior by promoting pyroptosis of ESCC cells by inhibiting proliferation, migration, invasion, and colony formation of KYSE-30 cells, up-regulating expressions of ASC, Cleaved-caspase-1, NLRP3, and GSDMD, while inducing the generation of ROS. Further, NRF2 knockdown promoted TXNIP expression, while overexpression of NRF2 inhibited TXNIP expression. However, after PL treatment, this effect was reversed. In addition, PL significantly inhibited the malignant behavior of ESCC cells while the inhibitory effects were reversed by DMF (NRF2 activator) or NAC (ROS eliminator) treatment. Finally, PL markedly increased expressions of ASC, Cleaved-caspase-1, NLRP3, GSDMD, and the generation of ROS while the effects were reversed by TXNIP knockdown or RUS (TXNIP inhibitor) treatment. In vivo, the KYSE-30 xenograft model confirmed that PL inhibited the growth of ESCC transplanted tumors by promoting cell pyroptosis. In conclusion, the results suggested that PL inhibited the malignant behavior of ESCC cells in vitro and tumorigenesis of ESCC in vivo by inhibiting NRF2 and promoting ROS-TXNIP-NLRP3-mediated pyroptosis.


Subject(s)
Benzodioxoles , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Reactive Oxygen Species/metabolism , Esophageal Squamous Cell Carcinoma/drug therapy , NF-E2-Related Factor 2/metabolism , Esophageal Neoplasms/drug therapy , Signal Transduction , Caspase 1/metabolism , Inflammasomes/metabolism , Carrier Proteins/metabolism
19.
Foods ; 13(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38254499

ABSTRACT

The aim of this study was to explore the potential of commercial lactic acid bacteria (LAB) as probiotic starters in fermented sausages. We initially investigated the growth activity, acid production capability, and tolerance to fermentation conditions of Lactobacillus sakei, Lactiplantibacillus plantarum, and Pediococcus pentosaceus. All three LAB strains proved viable as starters for fermented sausages. Subsequently, we explored their potential as probiotics based on their antibacterial and antioxidant capabilities. L. plantarum exhibited stronger inhibition against Escherichia coli and Staphylococcus aureus. All three strains displayed antioxidant abilities, with cell-free supernatants showing a higher antioxidant activity compared to intact cells and cell-free extracts. Moreover, the activities of superoxide dismutase, glutathione peroxidase, and catalase were stronger in the cell-free supernatant, cell-free extract, and intact cell, respectively. Finally, we individually and collectively inoculated these three LAB strains into sausages to investigate their impact on quality during the fermentation process. External starters significantly reduced pH, thiobarbituric acid reactive substances, and sodium nitrite levels. The improvements in color and texture had positive effects, with the L. plantarum inoculation achieving higher sensory scores. Overall, all three LAB strains show promise as probiotic fermentation starters in sausage production.

20.
Anal Chim Acta ; 1290: 342169, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38246737

ABSTRACT

The development of novel diabetes monitoring sensors is important for the diabetes management of millions of diabetic patients. This work reports a flexible filamentary continuous glucose monitoring (CGM) sensor. A multilayer CGM sensor has been constructed on titanium filament with low cost and ease of use. The sensor, made of flexible material, offers better adaptability and comfort than traditional rigid filament CGM sensors, allowing continuous monitoring of subcutaneous blood glucose levels to provide patients with treatment strategies. The performance and reliability of the sensor were verified through rat experiments. The trend of the increase and decrease of the detected current was generally consistent with the actual blood glucose, and the detected values were located in regions A and B of the Clarke error grid. The results show that the sensor has the advantages of high sensitivity, high accuracy and fast response speed, which is suitable for monitoring the blood glucose level for a long time and has a broad application prospect in diabetes monitoring, exercise monitoring, health management and clinical application.


Subject(s)
Diabetes Mellitus , Wearable Electronic Devices , Humans , Animals , Rats , Blood Glucose , Blood Glucose Self-Monitoring , Reproducibility of Results , Continuous Glucose Monitoring , Diabetes Mellitus/diagnosis , Diabetes Mellitus/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...