Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Transl Cancer Res ; 13(6): 2905-2912, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988923

ABSTRACT

Background: As the overall survival (OS) of patients with multiple myeloma (MM) improves, the incidence of second primary malignancy (SPM) in long-term complications increases. However, there are limited data regarding MM as a SPM. Therefore, this study aimed to determine the time trends in the incidence of MM, as well as the incidence and survival of patients with MM as the SPM. Methods: Kaplan-Meier survival analysis was performed to determine the survival curve, while a log-rank test was used to determine OS. Results: A total of 794 patients were diagnosed with MM among 7,921 patients with hematologic malignancy between 2009 and 2017. The incidence of MM showed an annual upward trend, increasing from 9.3% [2009-2011] to 10.8% [2015-2017]. Of the 794 patients with MM, 16 were diagnosed as the SPM commonly secondary to cancers of the lung (n=4), colon (n=3), breast (n=3), and other (n=6). The median survival of patients with MM as the SPM was 24.5 months (range, 1-95 months). The patients with MM without multiple malignancies had significantly longer survival (median, 46.5 months; range, 17-132 months; P=0.04). Conclusions: This retrospective study suggests that the incidence of MM may be increasing annually and that the survival of patients with MM as the second primary malignant was significantly shorter than that of those without multiple malignancies.

2.
Int Immunopharmacol ; 134: 112212, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728882

ABSTRACT

Chronic myeloid leukemia (CML) is a type of hematologic malignancies caused by BCR-ABL chimeric oncogene. Resistance to tyrosine kinase inhibitors (TKIs) leads to the progression of CML into advanced stages. Selinexor is a small molecule inhibitor that targets a nuclear transporter called Exportin 1. Combined with imatinib, selinexor has been shown to disrupt nuclear-cytoplasmic transport signal of leukemia stem cells, resulting in cell death. The objective of this study was to investigate the mechanism of drug resistance to selinexor in CML. We established K562 cell line resistant to selinexor and conducted single cell dynamic transcriptome sequencing to analyze the heterogeneity within the parental and selinexor resistant cell populations. We identified specific gene expression changes associated with resistance to selinexor. Our results revealed differential expression patterns in genes such as MT2A, TFPI, MTND3, and HMGCS1 in the total RNA, as well as MT-TW, DNAJB1, and HSPB1 in the newly synthesized RNA, between the parental and drug-resistant groups. By applying pseudo-time analysis, we discovered that a specific cluster of cells exhibited characteristics of tumor stem cells. Furthermore, we observed a gradual decrease in the expression of ferroptosis-related molecules as drug resistance developed. In vitro experiments confirmed that the combination of a ferroptosis inducer called RSL3 effectively overcame drug resistance. In conclusion, this study revealed the resistance mechanism of selinexor in CML. In conclusion, we identified a subgroup of CML cells with tumor stem cell properties and demonstrated that ferroptosis inducer improved the efficacy of selinexor in overcoming drug resistance.


Subject(s)
Drug Resistance, Neoplasm , Hydrazines , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Triazoles , Humans , Hydrazines/pharmacology , Hydrazines/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Drug Resistance, Neoplasm/genetics , Triazoles/pharmacology , K562 Cells , Single-Cell Analysis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , RNA-Seq , Single-Cell Gene Expression Analysis
3.
Clin Chim Acta ; 548: 117497, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37479009

ABSTRACT

BACKGROUND-AIM: Patients with multiple myeloma (MM) relapse with extramedullary disease (EMD) exhibits an aggressive disease course and poor prognostic features. Myelomatous effusion (ME) is a rare subtype of EMD. METHODS: In this retrospective study, we analyzed the baseline characteristics and therapies of 14 EMD patients relapse with ME and 21 EMD patients relapse without ME. RESULTS: Patients with ME relapse demonstrated higher concentrations of serum lactate dehydrogenase, a higher fraction in the International Staging System stage III, and poorer event-free survival (EFS) (9.3 vs. 36.57 months; P = 0.0013) and overall survival (OS) (12.06 vs. 42.64 months; P < 0.001). The multivariate analysis showed that the presence of ME (hazard ratio [HR] 12.57; P = 0.003) and lack of autologous hematopoietic stem cell transplantation therapy (HR 4.382; P = 0.014) were predictive factors for poor OS. Using single-cell RNA sequencing, we discovered several bortezomib resistance genes were highly expressed in extramedullary malignant plasma cells. CONCLUSIONS: The presence of ME strongly predicts a poor prognosis in patients with MM relapse with EMD, and bortezomib resistance genes are highly expressed in extramedullary malignant plasma cells.


Subject(s)
Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Humans , Multiple Myeloma/diagnosis , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Bortezomib/pharmacology , Bortezomib/therapeutic use , Retrospective Studies , Up-Regulation , Neoplasm Recurrence, Local , Prognosis
4.
Blood Adv ; 7(15): 4148-4159, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37276129

ABSTRACT

Myelomatous effusion (ME) is a rare manifestation of extramedullary multiple myeloma (MM) with limited therapeutic options and poor outcomes. The molecular mechanisms underlying ME are incompletely understood. We profiled transcriptomes of bone marrow, peripheral blood (PB), and pleural effusion/ascites from 3 patients with ME using single-cell RNA sequencing analysis. We found that ME contained a higher percentage of cytotoxic T cells, whereas PB contained a higher proportion of naive T cells. Malignant cells varied within and between sites and patients in their expression of signatures. We identified a gene module highly expressed in intramedullary and extramedullary plasma cell clusters and defined cell clusters expressing this gene set as extramedullary-initiating cells (EMICs). This gene set was associated with increased cellular proliferation, involved in p53 signaling, and related to poor prognosis in MM. The transcriptional regulators E2F1, YY1, and SMAD1 were activated in EMICs. Leukocyte immunoglobulin-like receptor subfamily B4 (LILRB4) was upregulated in extramedullary EMICs. We confirmed that LILRB4 promoted MM cell migration in vitro. This study provided insight into the evolutionary mechanisms of ME and defined EMICs and LILRB4 associated with extramedullary development.


Subject(s)
Multiple Myeloma , Humans , Cell Proliferation , Membrane Glycoproteins/genetics , Multiple Myeloma/pathology , Receptors, Immunologic/genetics , Sequence Analysis, RNA , T-Lymphocytes, Cytotoxic
5.
Hematology ; 28(1): 2164449, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36657019

ABSTRACT

OBJECTIVE: Long non-coding RNAs (lncRNAs) are involved in tumorigenesis and play a key role in cancer progression. To determine whether lncRNAs are involved in extramedullary disease of multiple myeloma (EMD), we analyzed the expression profile of lncRNAs in EMD. METHODS: Three pairs of EMD patients and their intramedullary MM cells were screened by microarray first. We extracted data from gene chips and made an identification of lncRNAs and mRNAs with significant differences between EMD group and non EMD group. WGCNA confirmed the EMD related gene module and drew a heat map to further determine the key gene lncRNA-NEAT1. In the meantime, bone marrow and extramedullary samples (hydrothorax and ascites) were collected from 2 MM patients and subjected to single-cell RNA-seq. Single cell Transcriptome analysis was conducted to verify the gene expression difference of malignant plasma cells derived from intramedullary and extramedullary. Then we verified high expression level of lncRNA-NEAT1 in EMD patients by using quantitative real-time PCR (qRT-PCR) and analyzed the correlation between expression patterns and survival and molecular genetics analysis of the LncRNA (NEAT1) involved in MM patients. At last, cell experiments were conducted to observe the effects of down-regulation of NEAT1on the proliferation, cell cycle and PTEN pathway related proteins of multiple myeloma cell lines U266 and RPMI8226. RESULTS: We identified one of the EMD related key gene is lncRNA-NEAT1. Compared with patients without extramedullary lesions, intramedullary MM cells in EMD patients expressed NEAT1 highly. The outcome of parallel single-cell RNA sequencing (RNA-seq) revealed NEAT1 level of plasma cells came from pleural effusion /ascites increased significantly compared with myeloma-stricken bone marrow. By survival and molecular genetic analysis, NEAT1 gene expression was not associated with OS and PFS in MM patients. However, the expression of NEAT1 is related to adverse therapeutic reactions and the progression of MM. We found that the expressions of NEAT1 were negatively associated with albumin levels and were positively associated with gain of chromosome 1q, IGH-CCND1, IGH@-FGFR3/WHSC1,and IGH-MAF gene fusion, respectively. At the level of cell experiment, CCK-8, soft agar clone formation experiment and CFSE staining showed that down regulating NEAT1 could inhibit the proliferation of U266 and RPMI8226 cells; Cell cycle detection showed that down-regulation of NEAT1 would interfere with the cell cycle process, and RPMI 8226 cells were blocked in G1 phase. Western blot analysis showed that when the expression of NEAT1 was down regulated in U266 and RPMI 8226 cells, the expression of PTEN and p-PTEN (phosphorylated phosphatase and tensin homologue) was up-regulated, and the expression of PI3K, p-PI3K (human phosphorylated inositol 3 kinase), Akt, p-Akt (phosphorylated protein kinase B). DISCUCCION AND CONCLUSION: This study provides novel insights into the lncRNA-NEAT1 and reveals that NEAT1 maybe a potential lncRNA biomarkers in EMD.


Subject(s)
MicroRNAs , Multiple Myeloma , RNA, Long Noncoding , Humans , Ascites/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Multiple Myeloma/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
6.
Front Chem ; 10: 854664, 2022.
Article in English | MEDLINE | ID: mdl-35360531

ABSTRACT

Zeolite SAPO-34 has been widely used in the industry because of its special pore structure and wide distribution of acid sites in the pore channel. However, traditional SAPO-34 with a small pore size suffers from carbon deposition and deactivation in catalytic reactions, and its inability to catalytically convert bulky organic molecules limits its industrial application. Meanwhile, impurities of SAPO-5, which have weak acidity leading to rapid catalyst deactivation, appear in SAPO-34 zeolite. Therefore, it is of great significance to synthesize SAPO-34 zeolite with a mesoporous pore structure, which can significantly improve the transfer of molecules in zeolites. In this paper, SAPO-34 zeolite with a hierarchical pore structure was synthesized, and its hydrodesulfurization performance for 4,6-dimethyldibenzothiophene (4,6-DMDBT) was studied in a fixed bed reactor. The characteristic results show that BET-specific surface area, micropore volume, and mesoporous volume of synthesized SAPO-34 are 754 m2 g-1, 0.25, and 0.23 cm3 g-1 respectively, and the pore size is mainly concentrated at 4 nm. The catalytic conversion of 4,6-DMDMT with Co- and Mo-supported SAPO-34 is about 83%, which is much higher than the catalytic performance of Al2O3.

7.
Materials (Basel) ; 14(11)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34205945

ABSTRACT

In recent years, as a result of the large-scale use of stainless steel bars in production and life, people's demand for stainless steel bars has increased. However, existing research information on stainless steel bars is scant, especially the lack of research on the mechanical properties of duplex stainless steel bars and the bonding properties of duplex stainless steel bars to concrete. Therefore, this paper selects 177 duplex stainless steel bars with different diameters for room temperature tensile test, and then uses mathematical methods to provide suggestions for the values of their mechanical properties. The test results show that the duplex stainless steel bar has a relatively high tensile strength of 739 MPa, no significant yield phase, and a relatively low modulus of elasticity of 1.43 × 105 MPa. In addition, 33 specimens were designed to study the bonding properties of duplex stainless steel bars to concrete. In this paper, the effects of concrete strength, duplex stainless steel reinforcement diameter, the ratio of concrete cover to reinforcing steel diameter, and relative anchorage length on the bond stress were investigated, and a regression model was established based on the experimental results. The results show that, with the concrete strength concrete strength from C25 to C40, the compressive strength of concrete increased by 56.1%, the bond stress increased by 27%; the relative anchorage length has been increased from 3 to 6, the relative anchorage length has doubled, and the bond stress has increased by 13%; and, the ratio of concrete cover to reinforcing steel diameter increased to a certain range on the bond stress has no significant effect and duplex stainless steel reinforcement diameter has little effect on the bond stress. The ratio of concrete cover to reinforcing steel diameter from 3.3 to 4.5 and the bond stress increased by 24.7%. A ratio of concrete cover to reinforcing steel diameter greater than 4.5 has no significant effect on the bond stress, with the average bond stress value of 20.1 MPa. The duplex stainless steel bar diameter has little effect on the bond stress for the diameters of 12 mm, 16 mm, 25 mm duplex stainless steel bar, and their average bond stress is 19.9 MPa.

8.
Chemphyschem ; 19(24): 3346-3349, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30353626

ABSTRACT

We carried out density functional theory simulations to examine the stability and CO oxidation activity of single Cu atoms supported on CeO2 (111). Both the strong binding energy and high activation energy for Cu single atom diffusion indicate a high stability of the Cu1 /CeO2 single-atom catalyst. Electronic structure analysis verifies the formation of Cu+ cation due to electron transfer. The frequency analysis further corroborates that the experimentally observed IR bands around 2114-2130 cm-1 of CO adsorption at the boundary of Cu/CeO2 correspond to Cu+ -carbonyl species. Cu1 /CeO2 single-atom catalyst displays a promising catalytic activity for CO oxidation via Mars van Krevelen mechanism.

9.
PLoS One ; 10(12): e0144842, 2015.
Article in English | MEDLINE | ID: mdl-26658644

ABSTRACT

There has been an upsurge of green reductants for the preparation of graphene materials taking consideration of human health and the environment in recent years. In this paper, reduced graphene oxides (RGOs) were prepared by chemical reduction of graphene oxide (GO) with three green reductants, L-ascorbic acid (L-AA), D-glucose (D-GLC) and tea polyphenol (TP), and comparatively characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectra, Raman spectra and electrical conductivity analysis. Results showed that all these three reductants were effective to remove oxygen-containing functional groups in GO and restore the electrical conductivity of the obtained RGO. The RGO sample with L-ascorbic acid as a reductant and reduced with the existence of ammonia had the highest electrical conductivity (9.8 S·cm(-1)) among all the obtained RGO samples. The mechanisms regarding to the reduction of GO and the dispersion of RGO in water were also proposed. It is the good dispersibility of reduced graphene oxide in water that will facilitate its further use in composite materials and conductive ink.


Subject(s)
Ascorbic Acid/chemistry , Glucose/chemistry , Graphite/chemistry , Polyphenols/chemistry , Reducing Agents/chemistry , Camellia sinensis/chemistry , Electric Conductivity , Green Chemistry Technology , Humans , Oxidation-Reduction , Oxides , Polyphenols/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL