Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
Gels ; 10(8)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39195028

ABSTRACT

Photodynamic therapy (PDT) is an emerging treatment modality that utilizes light-sensitive compounds, known as photosensitizers, to produce reactive oxygen species (ROS) that can selectively destroy malignant or diseased tissues upon light activation. This study investigates the incorporation of two porphyrin structures, 5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl) porphyrin (P2.2.) and 5,10,15,20-tetrakis-(4-acetoxy-3-methoxyphenyl) porphyrin (P2.1.), into hydroxypropyl cellulose (HPC) hydrogels for potential use in topical photodynamic therapy (PDT). The structural and compositional properties of the resulting hydrogels were characterized using advanced techniques such as Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), atomic force microscopy (AFM), UV-Visible (UV-Vis) spectroscopy, and fluorescence spectroscopy. FTIR spectra revealed a slight shift of the main characteristic absorption bands corresponding to the porphyrins and their interactions with the HPC matrix, indicating successful incorporation and potential hydrogen bonding. XRD patterns revealed the presence of crystalline domains within the HPC matrix, indicating partial crystallization of the porphyrins dispersed within the amorphous polymer structure. TGA results indicated enhanced thermal stability of the HPC-porphyrin gels compared to 10% HPC gel, with additional weight loss stages corresponding to the thermal degradation of the porphyrins. Rheological analysis showed that the gels exhibited pseudoplastic behavior and thixotropic properties, with minimal impact on the flow properties of HPC by P2.1., but notable changes in viscosity and shear stress with P2.2. incorporation, indicating structural modifications. AFM imaging revealed a homogeneous distribution of porphyrins, and UV-Vis and fluorescence spectroscopy confirmed the retention of their photophysical properties. Pharmacotechnical evaluations showed that the hydrogels possessed suitable mechanical properties, optimal pH, high swelling ratios, and excellent spreadability, making them ideal for topical application. These findings suggest that the porphyrin-incorporated HPC hydrogels have significant potential as effective therapeutic agents for topical applications.

2.
Heliyon ; 10(12): e33162, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39021978

ABSTRACT

Recent advancements in the formulation of solid dosage forms involving active ingredient-cyclodextrin complexes have garnered considerable attention in pharmaceutical research. While previous studies predominantly focused on incorporating these complexes into solid states, issues regarding incomplete inclusion prompted the exploration of novel methods. In this study, we aimed to develop an innovative approach to integrate liquid-state drug-cyclodextrin inclusion complexes into solid dosage forms. Our investigation centered on rivaroxaban, a hydrophobic compound practically insoluble in water, included in hydroxypropyl-ß-cyclodextrin at a 1:1 M ratio, and maintained in a liquid state. To enhance viscosity, hydroxypropyl-cellulose (2 % w/w) was introduced, and the resulting dispersion was sprayed onto the surface of cellulose pellets (CELLETS®780) using a Caleva Mini Coater. The process parameters were meticulously controlled, with atomization air pressure set at 1.1 atm and a fluidizing airflow maintained at 35-45 m3/h. Characterization of the coated cellets, alongside raw materials, was conducted using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) analyses. Physicochemical evaluations affirmed the successful incorporation of rivaroxaban into hydroxypropyl-ß-cyclodextrin, with the final cellets demonstrating excellent flowability, compressibility, and adequate hardness. Quantitative analysis via the HPLC-DAD method confirmed a drug loading of 10 mg rivaroxaban/750 mg coated cellets. In vitro dissolution studies were performed in two distinct media: 0.022 M sodium acetate buffer pH 4.5 with 0.2 % sodium dodecyl sulfate (mirroring compendial conditions for 10 mg rivaroxaban tablets), and 0.05 M phosphate buffer pH 6.8 without surfactants, compared to reference capsules and conventional tablet formulations. The experimental capsules exhibited similar release profiles to the commercial product, Xarelto® 10 mg, with enhanced dissolution rates observed within the initial 10 min. This research presents a significant advancement in the development of solid dosage forms incorporating liquid-state drug-cyclodextrin inclusion complexes, offering a promising avenue for improving drug delivery and bioavailability.

3.
Materials (Basel) ; 17(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38611986

ABSTRACT

Development of efficient controlled local release of drugs that prevent systemic side effects is a challenge for anti-osteoporotic treatments. Research for new bone-regeneration materials is of high importance. Strontium (Sr) is known as an anti-resorptive and anabolic agent useful in treating osteoporosis. In this study, we compared two different types of synthesis used for obtaining nano hydroxyapatite (HA) and Sr-containing nano hydroxyapatite (SrHA) for bone tissue engineering. Synthesis of HA and SrHA was performed using co-precipitation and hydrothermal methods. Regardless of the synthesis route for the SrHA, the intended content of Sr was 1, 5, 10, 20, and 30 molar %. The chemical, morphological, and biocompatibility properties of HA and SrHA were investigated. Based on our results, it was shown that HA and SrHA exhibited low cytotoxicity and demonstrated toxic behavior only at higher Sr concentrations.

4.
Gels ; 10(2)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38391459

ABSTRACT

Ti-aluminosilicate gels were used as supports for the immobilization of Fe, Co, and Ni oxides (5%) by impregnation and synthesis of efficient photocatalysts for the degradation of ß-lactam antibiotics from water. Titanium oxide (1 and 2%) was incorporated into the zeolite network by modifying the gel during the zeolitization process. The formation of the zeolite Y structure and its microporous structure were evidenced by X-ray diffraction and N2 physisorption. The structure, composition, reduction, and optical properties were studied by X-ray diffraction, H2-TPR, XPS, Raman, photoluminescence, and UV-Vis spectroscopy. The obtained results indicated a zeolite Y structure for all photocatalysts with tetracoordinated Ti4+ sites. The second transitional metals supported by the post-synthesis method were obtained in various forms, such as oxides and/or in the metallic state. A red shift of the absorption edge was observed in the UV-Vis spectra of photocatalysts upon the addition of Fe, Co, or Ni species. The photocatalytic performances were evaluated for the degradation of cefuroxime in water under visible light irradiation. The best results were obtained for iron-immobilized photocatalysts. Scavenger experiments explained the photocatalytic results and their mechanisms. A different contribution of the active species to the photocatalytic reactions was evidenced.

5.
ACS Omega ; 8(44): 41664-41673, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37970036

ABSTRACT

Photocatalysis is one of the approaches for solving environmental issues derived from extremely harmful pollution caused by industrial dyes, medicine, and heavy metals. Titanium dioxide is among the most promising photocatalytic semiconductors; thus, in this work, TiO2 powders were prepared by a hydrothermal synthesis using titanium tetrachloride TiCl4 as a Ti source. The effect of the hydrochloric acid (HCl) concentration on TiO2 formation was analyzed, in which a thorough morpho-structural analysis was performed employing different analysis methods like XRD, Raman spectroscopy, SEM/TEM, and N2 physisorption. EPR spectroscopy was employed to characterize the paramagnetic defect centers and the photogeneration of reactive oxygen species. Photocatalytic properties were tested by photocatalytic degradation of the rhodamine B (RhB) dye under UV light irradiation and using a solar simulator. The pH value directly influenced the formation of the TiO2 phases; for less acidic conditions, the anatase phase of TiO2 crystallized, with a crystallite size of ≈9 nm. Promising results were observed for TiO2, which contained 76% rutile, showing a 96% degradation of RhB under the solar simulator and 91% under UV light after 90 min irradiation, and the best result showed that the sample with 67% of the anatase phase after 60 min irradiation under the solar simulator had a 99% degradation efficiency.

6.
Dalton Trans ; 52(35): 12282-12295, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37574873

ABSTRACT

Two families of homo- and heterometallic complexes, [Zn2L1(µ-OH)(H2O)2](ClO4)2, [Zn2L2(µ-OH)(H2O)2](ClO4)2, [Zn2L3(µ-OH)(H2O)2](ClO4)2, 1∞[{L1Zn2(µ-OH)}{µ-[Ag(CN)2]}](ClO4), [{L1Zn2(µ-OH)}2{µ-[Au(CN)2]}{[Au(CN)2]2}](ClO4)·H2O, 1∞[{L2Zn2(µ3-OH)}2(H2O){µ-[Ag(CN)2]}](ClO4)3·THF·0.5MeOH, 1∞[{L2Zn2(µ3-OH)}2(H2O){µ-[Au(CN)2]}](ClO4)3·THF·H2O, and 1∞[{L3Zn2(µ-OH)}{µ-[Ag(CN)2]}][Ag(CN)2]·H2O, respectively, have been synthesized and characterized. The Schiff bases used as ligands were obtained by condensation reactions of 2,6-diformyl-p-cresol with N,N-dimethyl-ethylenediamine (HL1), 2-aminomethyl-pyridine (HL2), and 2-aminoethyl-pyridine (HL3), respectively. The cytotoxic/cytostatic and genotoxic effects in cultured human MCF-7 (luminal type A breast cancer), MDA-MB-231 (triple negative breast cancer), HeLa (cervical carcinoma), and Lep-3 (non-tumor embryonal fibroblastoid cells) were studied. The investigations were performed by thiazolyl blue tetrazolium bromide test (MTT test), neutral red uptake cytotoxicity assay, crystal violet staining, hematoxylin and eosin staining, double staining with acridine orange and propidium iodide, AnnexinV/FITC, and Comet assay in short-term experiments (24-72 h, with monolayer cell cultures) as well as by 3D colony-forming method in long-term experiments (28 days, with 3D cancer cell colonies). The results obtained revealed that: (i) applied at a concentration range of 0.1-100 µg mL-1, the compounds investigated decrease in a time- and concentration-dependent manner the viability and/or proliferation of the treated cells; (ii) complexes of {Zn(II)Au(I)} show relatively higher cytotoxic/genotoxic activity and antitumor potential as compared to {Zn(II)Ag(I)}; (iii) some of the complexes demonstrate more pronounced cytotoxic potential than commercially available antitumor agents cisplatin, oxaliplatin, and epirubicin.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , Humans , Schiff Bases/pharmacology , Schiff Bases/chemistry , Ligands , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Zinc/pharmacology , Zinc/chemistry , Pyridines
7.
Dalton Trans ; 52(30): 10386-10401, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37401566

ABSTRACT

Two new families of zinc/cobalt/aluminum-based pigments, with a unique composition, were obtained through the polyol method. The hydrolysis process of a mixture of Co(CH3COO)2, Zn(acac)2 and Al(acac)3 (acac- = acetylacetonate ion) in 1,4-butanediol afforded dark blue gels (wPZnxCo1-xAl), in the presence of a supplementary amount of water, and light green powders (PZnxCo1-xAl), respectively, for the water-free procedure (x = 0, 0.2, 0.4). The calcination of the precursors yielded dark green (wZnxCo1-xAl) and blue (ZnxCo1-xAl) products. XRD measurements and Rietveld refinement indicate the co-existence of three spinel phases, in different proportions: ZnxCo1-xAl2O4, Co3O4 and the defect spinel, γ-Al2.67O4. The Raman scattering and XPS spectra are in agreement with the compositions of the samples. The morphology of wZnxCo1-xAl consists of large and irregular spherical particle aggregates (ca. 5-100 mm). Smaller agglomerates (ca. 1-5 mm) with a unique silkworm cocoon-like hierarchical morphology composed of cobalt aluminate cores covered with flake-like alumina shells are formed for ZnxCo1-xAl. TEM and HR-TEM analyses revealed the formation of crystalline, polyhedral particles of 7-43 nm sizes for wZnxCo1-xAl, while for ZnxCo1-xAl, a duplex-type morphology, with small (7-13 nm) and larger (30-40 nm) particles, was found. BET assessment showed that both series of oxides are mesoporous materials, with different pore structures, with the water-free samples exhibiting the largest surface areas due, most likely, to the high percent of aluminum oxide. A chemical mechanism is proposed to highlight the role of the water amount and the nature of the starting compounds in the hydrolysis reaction products and, further, in the morpho-structural features and composition of the resulting spinel oxides. The CIE L*a*b* and C* colorimetric parameters indicate that the pigments are bright, with a moderate degree of luminosity, presenting an outstanding high blueness.

8.
Gels ; 9(6)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37367173

ABSTRACT

The present work reports the synthesis of efficient Ti-Au/zeolite Y photocatalysts by different processing of aluminosilicate gel and studies the effect of titania content on the structural, morphological, textural, and optical properties of the materials. The best characteristics of zeolite Y were obtained by aging the synthesis gel in static conditions and mixing the precursors under magnetic stirring. Titania (5, 10, 20%) and gold (1%) species were incorporated in zeolite Y support by the post-synthesis method. The samples were characterized by X-ray diffraction, N2-physisorption, SEM, Raman, UV-Vis and photoluminescence spectroscopy, XPS, H2-TPR, and CO2-TPD. The photocatalyst with the lowest TiO2 loading shows only metallic Au on the outermost surface layer, while a higher content favors the formation of additional species such as: cluster type Au, Au1+, and Au3+. A high TiO2 content contributes to increasing the lifetime of photogenerated charge careers, and the adsorption capacity of the pollutant. Therefore, an increase in the photocatalytic performances (evaluated in degradation of amoxicillin in water under UV and visible light) was evidenced with the titania content. The effect is more significant in visible light due to the surface plasmon resonance (SPR) effect of gold interacting with the supported titania.

9.
Pharmaceutics ; 15(5)2023 May 10.
Article in English | MEDLINE | ID: mdl-37242698

ABSTRACT

A new series of nanostructured materials was obtained by functionalization of SBA-15 mesoporous silica with Ru(II) and Ru(III) complexes bearing Schiff base ligands derived from salicylaldehyde and various amines (1,2-diaminocyclohexane, 1,2-phenylenediamine, ethylenediamine, 1,3-diamino-2-propanol, N,N-dimethylethylenediamine, 2-aminomethyl-pyridine, and 2-(2-aminoethyl)-pyridine). The incorporation of ruthenium complexes into the porous structure of SBA-15 and the structural, morphological, and textural features of the resulting nanostructured materials were investigated by FTIR, XPS, TG/DTA, zeta potential, SEM, and N2 physisorption. The ruthenium complex-loaded SBA-15 silica samples were tested against A549 lung tumor cells and MRC-5 normal lung fibroblasts. A dose-dependent effect was observed, with the highest antitumoral efficiency being recorded for the material containing [Ru(Salen)(PPh3)Cl] (50%/90% decrease in the A549 cells' viability at a concentration of 70 µg/mL/200 µg/mL after 24 h incubation). The other hybrid materials have also shown good cytotoxicity against cancer cells, depending on the ligand included in the ruthenium complex. The antibacterial assay revealed an inhibitory effect for all samples, the most active being those containing [Ru(Salen)(PPh3)Cl], [Ru(Saldiam)(PPh3)Cl], and [Ru(Salaepy)(PPh3)Cl], especially against Staphylococcus aureus and Enterococcus faecalis Gram-positive strains. In conclusion, these nanostructured hybrid materials could represent valuable tools for the development of multi-pharmacologically active compounds with antiproliferative, antibacterial, and antibiofilm activity.

10.
Front Chem ; 11: 1154219, 2023.
Article in English | MEDLINE | ID: mdl-37090252

ABSTRACT

Layered zinc hydroxynitrate (ZHN), with the chemical formula Zn5 (OH)8 (NO3)2·2H2O, exhibits a range of special properties such as anion-exchange and intercalation capacity, as well as biocompatibility, making it attractive for a large variety of applications in fields from nanotechnology to healthcare and agriculture. In this study nanocrystalline ZHN doped with 1,000 ppm Mn2+ was prepared by two synthesis methods (coprecipitation and solid state reaction) using similar environment-friendly precursors. The complex morpho-structural [X-ray diffraction, scanning and transmission electron microscopy, textural analysis] and spectroscopic [Fourier transform infrared and electron paramagnetic resonance (EPR)] characterization of the two ZHN nanopowders showed similar crystalline structures with Mn2+ ions localized in the nanocrystals volume, but with differences in their morphological and textural characteristics, as well as in the doping efficiency. ZHN obtained by coprecipitation consists of larger nanoplatelets with more than two times larger specific surface area and pore volume, as well as a dopant concentration than in the ZHN sample obtained by solid state reaction. The thermal stability and the on-set of the structural phase transformation have been investigated at atomic scale with high accuracy by EPR, using Mn2+ as paramagnetic probes. The on-set of the ZHN structural phase transformation toward ZnO was observed by EPR to take place at 110°C and 130°C for the samples prepared by coprecipitation and solid state reaction, respectively, evidencing a manganese induced local decrease of the transformation temperature. Our results contribute to the selection of the most appropriate ZHN synthesis method for specific applications and in the development of new green, cost-effective synthesis routes for Mn2+ doped nano-ZnO.

11.
Antioxidants (Basel) ; 12(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36978939

ABSTRACT

ZnSe, ZnSe-TiO2 microspheres and nanostructured TiO2 obtained by hydrothermal and sol-gel methods were tested against Staphylococcus aureus ATCC 25923 and Micrococcus lysodeikticus ATCC 4698 before and after lysozyme (Lys) loading. Morphological characterization of inorganic matrices and hybrid organic-inorganic complexes were performed by microscopy techniques (SEM, AFM and Dark Field Hyperspectral Microscopy). Light absorption properties of ZnSe, ZnSe-TiO2 and TiO2 powders were assessed by UV-visible spectroscopy and their ability to generate reactive oxygen species (•OH and O2•-) under visible light irradiation was investigated. Antibacterial activity of ZnSe, ZnSe-TiO2, TiO2, Lys/ZnSe, Lys/ZnSe-TiO2 and Lys/TiO2 samples under exposure to visible light irradiation (λ > 420 nm) was tested against Staphylococcus aureus and Micrococcus lysodeikticus and correlated with ROS photogeneration.

12.
Nanomaterials (Basel) ; 12(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36558305

ABSTRACT

Nanotechnology offers unlimited possibilities for creating effective hybrid materials, which combine functional performance in environment depollution and antimicrobial defense with a lack of toxicity, biocompatibility, biodegradability, and natural availability. This paper presents the silver effect on photocatalytic and antibacterial activities of double-coated iron oxide nanoparticles (NPs), Fe3O4@SiO2/ZnO-Ag. The structural, morphological, and textural information of the, core-shell iron oxides-based superparamagnetic nanoparticles (IOMNPs) decorated with 5% Ag by ultrasound-assisted synthesis were evaluated by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDX), X-ray diffraction, Raman spectroscopy, and Brunauer-Emmett-Teller physisorption measurements. Although two synthesis temperatures of 95 and 80 °C were used for the co-precipitated iron oxide cores, the XRD patterns revealed the formation of a single magnetite, Fe3O4, phase. The sorption-photocatalytic activities under dark and UV irradiation encountered a maximum removal efficiency of the MB (90.47%) for the Fe3O4@SiO2/ZnO-Ag sample with iron oxide core obtained at 80 °C. The rate constant for the second-order kinetics was 0.0711 min-1 for 2 h, and the correlation coefficient R2 closed to unity. Two samples with Ag-decorated hybrid SiO2/ZnO shell and hierarchically interconnected porous structure with large surface area (328.8 and 342.5 m2g-1) exhibited the best disk diffusion antimicrobial activity against four microorganisms, especially gram-positive Staphylococcus aureus.

13.
Int J Mol Sci ; 23(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36555305

ABSTRACT

Two novel fluorescent mesoporous silica-based hybrid materials were obtained through the covalent grafting of [4-hydrazinyl-7-nitrobenz-[2,1,3-d]-oxadiazole (NBDH) and N1-(7-nitrobenzo[c][1,2,5]-oxadiazol-4-yl) benzene-1,2-diamine (NBD-PD), respectively, inside the channels of mesoporous silica SBA-15. The presence of fluorescent organic compounds (nitrobenzofurazan derivatives) was confirmed by infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), thermal analysis (TG), and fluorescence spectroscopy. The nitrogen physisorption analysis showed that the nitrobenzofurazan derivatives were distributed uniformly on the internal surface of SBA-15, the immobilization process having a negligible effect on the structure of the support. Their antioxidant activity was studied by measuring the ability to reduce free radicals DPPH (free radical scavenging activity), in order to formulate potential applications of the materials obtained. Cytotoxicity of the newly synthesized materials, SBA-NBDH and SBA-NBD-PD, was evaluated on human B16 melanoma cells. The morphology of these cells, internalization and localization of the investigated materials in melanoma and fibroblast cells were examined through fluorescence imaging. The viability of B16 (3D) spheroids after treatment with SBA-NBDH and SBA-NBD-PD was evaluated using MTS assay. The results showed that both materials induced a selective antiproliferative effect, reducing to various degrees the viability of melanoma cells. The observed effect was enhanced with increasing concentration. SBA-NBD-PD exhibited a higher antitumor effect compared to SBA-NBDH starting with a concentration of 125 µg/mL. In both cases, a significantly more pronounced antiproliferative effect on tumor cells compared to normal cells was observed. The viability of B16 spheroids dropped by 40% after treatment with SBA-NBDH and SBA-NBD-PD at 500 µg/mL concentration, indicating a clear cytotoxic effect of the tested compounds. These results suggest that both newly synthesized biomaterials could be promising antitumor agents for applications in cancer therapy.


Subject(s)
Antineoplastic Agents , Melanoma , Humans , Silicon Dioxide/chemistry , Coloring Agents , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
14.
J Funct Biomater ; 13(4)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36278649

ABSTRACT

Mesoporous bioactive glass nanoparticles (MBGNs) are widely recognized for their ability to bond to hard tissue, while the ions released from the BG structure enhance specific cellular pathways. In this study, the SiO2-P2O5-CaO-MgO-ZnO system was used to successfully synthesize MBGNs by a microemulsion-assisted sol-gel method. The MBGNs calcinated at 600 °C/3 h had a typical phosphosilicate structure together with a poorly crystalline hydroxyapatite (HAp). The addition of ZnO not only led to a higher degree of crystallinity of HAp but also induced a higher porosity of the particles. All MBGNs had a mesoporous structure with an interconnected network of slit shape pores. For each type of composition, two families of highly dispersed spherical nanoparticles could be identified. In vitro tests in simulated body fluid (SBF) proved that after only 3 days of immersion all the materials were covered with a layer of brushite whose degree of crystallinity decreases in the presence of Zn2+. The antibacterial assay revealed a strong inhibitory effect for all samples after 40 h of contact. Simultaneously, MBGNs did not increase the intracellular oxidative stress while it stimulated the cell proliferation process.

15.
Nanomaterials (Basel) ; 12(14)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35889735

ABSTRACT

The hematite-based nanomaterials are involved in several catalytic organic and inorganic processes, including water decontamination from organic pollutants. In order to develop such species, a series of bimetallic hematite-based nanocomposites were obtained by some goethite composites-controlled calcination. Their composition consists of various phases such as α-FeOOH, α-Fe2O3 or γ-Fe2O3 combined with amorphous (Mn2O3, Co3O4, NiO, ZnO) or crystalline (CuO) oxides of the second transition ion from the structure. The component dimensions, either in the 10-30 or in the 100-200 nm range, together with the quasi-spherical or nanorod-like shapes, were provided by Mössbauer spectroscopy and powder X-ray diffraction as well as transmission electron microscopy data. The textural characterization showed a decrease in the specific area of the hematite-based nanocomposites compared with corresponding goethites, with the pore volume ranging between 0.219 and 0.278 cm3g-1. The best catalytic activity concerning indigo carmine removal from water in hydrogen peroxide presence was exhibited by a copper-containing hematite-based nanocomposite sample that reached a dye removal extent of over 99%, which correlates with both the base/acid site ratio and pore size. Moreover, Cu-hbnc preserves its catalytic activity even after four recyclings, when it still reached a dye removal extent higher than 90%.

16.
Nanomaterials (Basel) ; 12(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35808082

ABSTRACT

In this study, three novel magnetic nanocomposites based on carboxyl-functionalized SBA-15 silica and magnetite nanoparticles were prepared through an effective and simple procedure and applied for methylene blue (MB) and malachite green G (MG) adsorption from single and binary solutions. Structure, composition, morphology, magnetic, and textural properties of the composites were thoroughly investigated. The influence of the amount of carboxyl functional groups on the physicochemical and adsorptive properties of the final materials was investigated. The capacity of the synthesized composites to adsorb MB and MG from single and binary solutions and the factors affecting the adsorption process, such as contact time, solution pH, and dye concentration, were assessed. Kinetic modelling showed that the dye adsorption mechanism followed the pseudo-second-order kinetic model, indicating that adsorption was a chemically controlled multilayer process. The adsorption rate was simultaneously controlled by external film diffusion and intraparticle diffusion. It was evidenced that the molecular geometry of the dye molecule plays a major role in the adsorption process, with the planar geometry of the MB molecule favoring adsorption. The analysis of equilibrium data revealed the best description of MB adsorption behavior by the Langmuir isotherm model, whereas the Freundlich model described better the MG adsorption.

17.
Pharmaceutics ; 14(6)2022 May 30.
Article in English | MEDLINE | ID: mdl-35745741

ABSTRACT

Finding innovative solutions to improve the lives of people affected by trauma, bone disease, or aging continues to be a challenge worldwide. Tissue engineering is the most rapidly growing area in the domain of biomaterials. Cerium-containing MBG-derived biomaterials scaffolds were synthesized using polymethyl methacrylate (PMMA) as a sacrificial template. The obtained scaffolds were characterized by X-ray powder diffraction (XRPD), infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The Ce4+/Ce3+ ratio in the scaffolds was estimated. In vitro testing revealed good cytocompatibility of the investigated scaffolds in mouse fibroblast cell line (NCTC clone L929). The results obtained regarding bioactivity, antibacterial activity, and controlled drug delivery functions recommend these scaffolds as potential candidates for bone tissue engineering applications.

18.
Membranes (Basel) ; 12(5)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35629792

ABSTRACT

In recent years, iron oxides-based nanostructured composite materials are of particular interest for the preparation of multifunctional thin films and membranes to be used in sustainable magnetic field adsorption and photocatalysis processes, intelligent coatings, and packing or bio-medical applications. In this paper, superparamagnetic iron oxide (core)-silica (shell) nanoparticles suitable for thin films and membrane functionalization were obtained by co-precipitation and ultrasonic-assisted sol-gel methods. The comparative/combined effect of the magnetic core co-precipitation temperature (80 and 95 °C) and ZnO-doping of the silica shell on the photocatalytic and nano-sorption properties of the resulted composite nanoparticles were investigated by ultraviolet-visible (UV-VIS) spectroscopy monitoring the discoloration of methylene blue (MB) solution under ultraviolet (UV) irradiation and darkness, respectively. The morphology, structure, textural, and magnetic parameters of the investigated powders were evidenced by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Brunauer-Emmett-Teller (BET) measurements, and saturation magnetization (vibrating sample magnetometry, VSM). The intraparticle diffusion model controlled the MB adsorption. The pseudo- and second-order kinetics described the MB photodegradation. When using SiO2-shell functionalized nanoparticles, the adsorption and photodegradation constant rates are three-four times higher than for using starting core iron oxide nanoparticles. The obtained magnetic nanoparticles (MNPs) were tested for films deposition.

19.
Sci Rep ; 12(1): 6887, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35477987

ABSTRACT

The present study aimed to assess the feasibility of developing low-cost multipurpose iron oxide/TiO2 nanocomposites (NCs) for use in combined antitumor therapies and water treatment applications. Larger size (≈ 100 nm) iron oxide nanoparticles (IONPs) formed magnetic core-TiO2 shell structures at high Fe/Ti ratios and solid dispersions of IONPs embedded in TiO2 matrices when the Fe/Ti ratio was low. When the size of the iron phase was comparable to the size of the crystallized TiO2 nanoparticles (≈ 10 nm), the obtained nanocomposites consisted of randomly mixed aggregates of TiO2 and IONPs. The best inductive heating and ROS photogeneration properties were shown by the NCs synthesized at 400 °C which contained the minimum amount of α-Fe2O3 and sufficiently crystallized anatase TiO2. Their cytocompatibility was assessed on cultured human and murine fibroblast cells and analyzed in relation to the adsorption of bovine serum albumin from the culture medium onto their surface. The tested nanocomposites showed excellent cytocompatibility to human fibroblast cells. The results also indicated that the environment (i.e. phosphate buffer or culture medium) used to disperse the nanomaterials prior to performing the viability tests can have a significant impact on their cytotoxicity.


Subject(s)
Nanocomposites , Oxides , Animals , Ferric Compounds/chemistry , Ferric Compounds/toxicity , Humans , Mice , Nanocomposites/chemistry , Nanocomposites/toxicity , Titanium
20.
J Fluoresc ; 32(4): 1309-1319, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35362934

ABSTRACT

A red-emitting fluorescent Riboflavin (RF)/Polyvinylpyrrolidone (PVP)-coated silver nanoparticles system, λem = 527 nm, Φ = 0.242, with a diameter of the metallic core of 27.33 nm and a zeta potential of - 25.05 mV was prepared and investigated regarding its biological activity. We found that PVP has a key role in RF adsorption around the SNPs surface leading to an enhancement of antioxidant properties (∼70%), low cytotoxicity (> 90% cell viability, at 50 µL/mL, after 48 h of incubation) as well as to an efficient process of its cellular uptake (∼ 60%, after 24 h of incubation) in L929 cells. The results are relevant concerning the involvement of RF and its coenzymes forms in SNPs - based systems, in cellular respiration as well as for future studies as antioxidant marker system on tumoral cells for viewing and monitoring them, by cellular imaging.


Subject(s)
Metal Nanoparticles , Nanoparticles , Antioxidants/pharmacology , Coloring Agents , Povidone , Riboflavin , Silver
SELECTION OF CITATIONS
SEARCH DETAIL