Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters










Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220376, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38368937

ABSTRACT

While causative mutations in complex disorders are rare, they can be used to extract a biological pathway whose pathogenicity can generalize to common forms of the disease. Here we begin by relying on the biological consequences of mutations in LRRK2 and VPS35, genetic causes of autosomal-dominant Parkinson's disease, to hypothesize that 'Retromer-dependent lysosomal stress' represents a pathway that can generalize to idiopathic Parkinson's disease. Next, we outline a series of studies that can test this hypothesis, including the development of biomarkers of pathway dysfunction. If validated, the hypothesis can suggest a unified mechanism of disease and might inform future diagnostic and therapeutic investigations. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/genetics , Parkinson Disease/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Mutation , Lysosomes/metabolism
3.
Cells ; 12(21)2023 10 31.
Article in English | MEDLINE | ID: mdl-37947636

ABSTRACT

T cells can express multiple inhibitory receptors. Upon induction of T cell exhaustion in response to a persistent antigen, prominently in the anti-tumor immune response, many are expressed simultaneously. Key inhibitory receptors are CTLA-4, PD-1, LAG3, TIM3, and TIGIT, as investigated here. These receptors are important as central therapeutic targets in cancer immunotherapy. Inhibitory receptors are not constitutively expressed on the cell surface, but substantial fractions reside in intracellular vesicular structures. It remains unresolved to which extent the subcellular localization of different inhibitory receptors is distinct. Using quantitative imaging of subcellular distributions and plasma membrane insertion as complemented by proximity proteomics and biochemical analysis of the association of the inhibitory receptors with trafficking adaptors, the subcellular distributions of the five inhibitory receptors were discrete. The distribution of CTLA-4 was most distinct, with preferential association with lysosomal-derived vesicles and the sorting nexin 1/2/5/6 transport machinery. With a lack of evidence for the existence of specific vesicle subtypes to explain divergent inhibitory receptor distributions, we suggest that such distributions are driven by divergent trafficking through an overlapping joint set of vesicular structures. This extensive characterization of the subcellular localization of five inhibitory receptors in relation to each other lays the foundation for the molecular investigation of their trafficking and its therapeutic exploitation.


Subject(s)
Neoplasms , T-Lymphocytes , Mice , Animals , CTLA-4 Antigen/metabolism , Carrier Proteins/metabolism , Neoplasms/metabolism , Immunotherapy
4.
Nat Commun ; 14(1): 3911, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37400440

ABSTRACT

Batten disease, one of the most devastating types of neurodegenerative lysosomal storage disorders, is caused by mutations in CLN3. Here, we show that CLN3 is a vesicular trafficking hub connecting the Golgi and lysosome compartments. Proteomic analysis reveals that CLN3 interacts with several endo-lysosomal trafficking proteins, including the cation-independent mannose 6 phosphate receptor (CI-M6PR), which coordinates the targeting of lysosomal enzymes to lysosomes. CLN3 depletion results in mis-trafficking of CI-M6PR, mis-sorting of lysosomal enzymes, and defective autophagic lysosomal reformation. Conversely, CLN3 overexpression promotes the formation of multiple lysosomal tubules, which are autophagy and CI-M6PR-dependent, generating newly formed proto-lysosomes. Together, our findings reveal that CLN3 functions as a link between the M6P-dependent trafficking of lysosomal enzymes and lysosomal reformation pathway, explaining the global impairment of lysosomal function in Batten disease.


Subject(s)
Membrane Glycoproteins , Neuronal Ceroid-Lipofuscinoses , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/metabolism , Receptor, IGF Type 2/genetics , Receptor, IGF Type 2/metabolism , Proteomics , Molecular Chaperones/metabolism , Lysosomes/metabolism , Hydrolases/metabolism , Autophagy
5.
bioRxiv ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37503045

ABSTRACT

T cells can express multiple inhibitory receptors. Upon induction of T cell exhaustion in response to persistent antigen, prominently in the anti-tumor immune response, many are expressed simultaneously. Key inhibitory receptors are CTLA-4, PD-1, LAG3, TIM3 and TIGIT, as investigated here. These receptors are important as central therapeutic targets in cancer immunotherapy. Inhibitory receptors are not constitutively expressed on the cell surface, but substantial fractions reside in intracellular vesicular structures. It remains unresolved to which extent the subcellular localization of different inhibitory receptors is distinct. Using quantitative imaging of subcellular distributions and plasma membrane insertion as complemented by proximity proteomics and a biochemical analysis of the association of the inhibitory receptors with trafficking adaptors, the subcellular distributions of the five inhibitory receptors were discrete. The distribution of CTLA-4 was most distinct with preferential association with lysosomal-derived vesicles and the sorting nexin 1/2/5/6 transport machinery. With a lack of evidence for the existence of specific vesicle subtypes to explain divergent inhibitory receptor distributions, we suggest that such distributions are driven by divergent trafficking through an overlapping joint set of vesicular structures. This extensive characterization of the subcellular localization of five inhibitory receptors in relation to each other lays the foundation for the molecular investigation of their trafficking and its therapeutic exploitation.

6.
Cell ; 186(10): 2219-2237.e29, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37172566

ABSTRACT

The Commander complex is required for endosomal recycling of diverse transmembrane cargos and is mutated in Ritscher-Schinzel syndrome. It comprises two sub-assemblies: Retriever composed of VPS35L, VPS26C, and VPS29; and the CCC complex which contains twelve subunits: COMMD1-COMMD10 and the coiled-coil domain-containing (CCDC) proteins CCDC22 and CCDC93. Combining X-ray crystallography, electron cryomicroscopy, and in silico predictions, we have assembled a complete structural model of Commander. Retriever is distantly related to the endosomal Retromer complex but has unique features preventing the shared VPS29 subunit from interacting with Retromer-associated factors. The COMMD proteins form a distinctive hetero-decameric ring stabilized by extensive interactions with CCDC22 and CCDC93. These adopt a coiled-coil structure that connects the CCC and Retriever assemblies and recruits a 16th subunit, DENND10, to form the complete Commander complex. The structure allows mapping of disease-causing mutations and reveals the molecular features required for the function of this evolutionarily conserved trafficking machinery.


Subject(s)
Abnormalities, Multiple , Craniofacial Abnormalities , Multiprotein Complexes , Humans , Endosomes/metabolism , Protein Transport , Proteins/metabolism , Multiprotein Complexes/metabolism
7.
Nat Commun ; 14(1): 3086, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248224

ABSTRACT

Retromer controls cellular homeostasis through regulating integral membrane protein sorting and transport and by controlling maturation of the endo-lysosomal network. Retromer dysfunction, which is linked to neurodegenerative disorders including Parkinson's and Alzheimer's diseases, manifests in complex cellular phenotypes, though the precise nature of this dysfunction, and its relation to neurodegeneration, remain unclear. Here, we perform an integrated multi-omics approach to provide precise insight into the impact of Retromer dysfunction on endo-lysosomal health and homeostasis within a human neuroglioma cell model. We quantify widespread changes to the lysosomal proteome, indicative of broad lysosomal dysfunction and inefficient autophagic lysosome reformation, coupled with a reconfigured cell surface proteome and secretome reflective of increased lysosomal exocytosis. Through this global proteomic approach and parallel transcriptomic analysis, we provide a holistic view of Retromer function in regulating lysosomal homeostasis and emphasise its role in neuroprotection.


Subject(s)
Multiomics , Neuroprotection , Humans , Proteome/metabolism , Proteomics , Endosomes/metabolism , Protein Transport/physiology , Lysosomes/metabolism
8.
Traffic ; 24(6): 234-250, 2023 06.
Article in English | MEDLINE | ID: mdl-37089068

ABSTRACT

Several functions of the human cell, such as sensing nutrients, cell movement and interaction with the surrounding environment, depend on a myriad of transmembrane proteins and their associated proteins and lipids (collectively termed "cargoes"). To successfully perform their tasks, cargo must be sorted and delivered to the right place, at the right time, and in the right amount. To achieve this, eukaryotic cells have evolved a highly organized sorting platform, the endosomal network. Here, a variety of specialized multiprotein complexes sort cargo into itineraries leading to either their degradation or their recycling to various organelles for further rounds of reuse. A key sorting complex is the Endosomal SNX-BAR Sorting Complex for Promoting Exit (ESCPE-1) that promotes the recycling of an array of cargos to the plasma membrane and/or the trans-Golgi network. ESCPE-1 recognizes a hydrophobic-based sorting motif in numerous cargoes and orchestrates their packaging into tubular carriers that pinch off from the endosome and travel to the target organelle. A wide range of pathogens mimic this sorting motif to hijack ESCPE-1 transport to promote their invasion and survival within infected cells. In other instances, ESCPE-1 exerts restrictive functions against pathogens by limiting their replication and infection. In this review, we discuss ESCPE-1 assembly and functions, with a particular focus on recent advances in the understanding of its role in membrane trafficking, cellular homeostasis and host-pathogen interaction.


Subject(s)
Endosomes , Host-Pathogen Interactions , Multiprotein Complexes , Receptors, Cell Surface , Sorting Nexins , Humans , Sorting Nexins/metabolism , Endosomes/metabolism , Multiprotein Complexes/metabolism , trans-Golgi Network/metabolism , Salmonella typhimurium/metabolism , Chlamydia trachomatis/metabolism , Viruses/metabolism , Receptors, Cell Surface/metabolism , Protein Transport
9.
Structure ; 30(12): 1590-1602.e6, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36302387

ABSTRACT

The sorting nexin SNX17 controls endosomal recycling of transmembrane cargo proteins including integrins, the amyloid precursor protein, and lipoprotein receptors. This requires association with the Commander trafficking complex and depends on the C terminus of SNX17 through unknown mechanisms. Using proteomics, we find that the SNX17 C terminus is sufficient for Commander interaction and also associates with members of the PDZ and LIM domain (PDLIM) family. SNX17 contains a type III PDZ binding motif that binds specifically to the PDLIM proteins. The structure of the PDLIM7 PDZ domain bound to the SNX17 C terminus reveals an unconventional perpendicular peptide interaction mediated by electrostatic contacts and a uniquely conserved proline-containing loop sequence in the PDLIM protein family. Our results define the mechanism of SNX17-PDLIM interaction and suggest that the PDLIM proteins may play a role in regulating the activity of SNX17 in conjunction with Commander and actin-rich endosomal trafficking domains.


Subject(s)
Proteomics , Sorting Nexins , Sorting Nexins/chemistry , Protein Binding , Amino Acid Sequence , Endosomes/metabolism
10.
Proc Natl Acad Sci U S A ; 119(25): e2201980119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35696571

ABSTRACT

Endosomal sorting maintains cellular homeostasis by recycling transmembrane proteins and associated proteins and lipids (termed "cargoes") from the endosomal network to multiple subcellular destinations, including retrograde traffic to the trans-Golgi network (TGN). Viral and bacterial pathogens subvert retrograde trafficking machinery to facilitate infectivity. Here, we develop a proteomic screen to identify retrograde cargo proteins of the endosomal SNX-BAR sorting complex promoting exit 1 (ESCPE-1). Using this methodology, we identify Neuropilin-1 (NRP1), a recently characterized host factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as a cargo directly bound and trafficked by ESCPE-1. ESCPE-1 mediates retrograde trafficking of engineered nanoparticles functionalized with the NRP1-interacting peptide of the SARS-CoV-2 spike (S) protein. CRISPR-Cas9 deletion of ESCPE-1 subunits reduces SARS-CoV-2 infection levels in cell culture. ESCPE-1 sorting of NRP1 may therefore play a role in the intracellular membrane trafficking of NRP1-interacting viruses such as SARS-CoV-2.


Subject(s)
COVID-19 , Endosomes , Host-Pathogen Interactions , Neuropilin-1 , SARS-CoV-2 , COVID-19/metabolism , COVID-19/virology , CRISPR-Cas Systems , Endosomes/virology , Gene Deletion , Humans , Nanoparticles , Neuropilin-1/genetics , Neuropilin-1/metabolism , Proteomics , SARS-CoV-2/metabolism , Sorting Nexins/metabolism , Spike Glycoprotein, Coronavirus/metabolism
11.
PLoS Biol ; 20(4): e3001601, 2022 04.
Article in English | MEDLINE | ID: mdl-35417450

ABSTRACT

Coat complexes coordinate cargo recognition through cargo adaptors with biogenesis of transport carriers during integral membrane protein trafficking. Here, we combine biochemical, structural, and cellular analyses to establish the mechanistic basis through which SNX27-Retromer, a major endosomal cargo adaptor, couples to the membrane remodeling endosomal SNX-BAR sorting complex for promoting exit 1 (ESCPE-1). In showing that the SNX27 FERM (4.1/ezrin/radixin/moesin) domain directly binds acidic-Asp-Leu-Phe (aDLF) motifs in the SNX1/SNX2 subunits of ESCPE-1, we propose a handover model where SNX27-Retromer captured cargo proteins are transferred into ESCPE-1 transport carriers to promote endosome-to-plasma membrane recycling. By revealing that assembly of the SNX27:Retromer:ESCPE-1 coat evolved in a stepwise manner during early metazoan evolution, likely reflecting the increasing complexity of endosome-to-plasma membrane recycling from the ancestral opisthokont to modern animals, we provide further evidence of the functional diversification of yeast pentameric Retromer in the recycling of hundreds of integral membrane proteins in metazoans.


Subject(s)
Endosomes , Sorting Nexins , Animals , Cell Membrane/metabolism , Endosomes/metabolism , Protein Transport , Sorting Nexins/metabolism
12.
Elife ; 102021 07 12.
Article in English | MEDLINE | ID: mdl-34251337

ABSTRACT

The endosome-associated cargo adaptor sorting nexin-27 (SNX27) is linked to various neuropathologies through sorting of integral proteins to the synaptic surface, most notably AMPA receptors. To provide a broader view of SNX27-associated pathologies, we performed proteomics in rat primary neurons to identify SNX27-dependent cargoes, and identified proteins linked to excitotoxicity, epilepsy, intellectual disabilities, and working memory deficits. Focusing on the synaptic adhesion molecule LRFN2, we established that SNX27 binds to LRFN2 and regulates its endosomal sorting. Furthermore, LRFN2 associates with AMPA receptors and knockdown of LRFN2 results in decreased surface AMPA receptor expression, reduced synaptic activity, and attenuated hippocampal long-term potentiation. Overall, our study provides an additional mechanism by which SNX27 can control AMPA receptor-mediated synaptic transmission and plasticity indirectly through the sorting of LRFN2 and offers molecular insight into the perturbed function of SNX27 and LRFN2 in a range of neurological conditions.


Subject(s)
Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Receptors, AMPA/metabolism , Sorting Nexins/metabolism , Animals , Endosomes/metabolism , Hippocampus/metabolism , Humans , Long-Term Potentiation , Memory Disorders/metabolism , Protein Transport , Proteomics/methods , Rats , Synaptic Transmission
13.
Nature ; 589(7842): 456-461, 2021 01.
Article in English | MEDLINE | ID: mdl-33328639

ABSTRACT

Autophagy, a process of degradation that occurs via the lysosomal pathway, has an essential role in multiple aspects of immunity, including immune system development, regulation of innate and adaptive immune and inflammatory responses, selective degradation of intracellular microorganisms, and host protection against infectious diseases1,2. Autophagy is known to be induced by stimuli such as nutrient deprivation and suppression of mTOR, but little is known about how autophagosomal biogenesis is initiated in mammalian cells in response to viral infection. Here, using genome-wide short interfering RNA screens, we find that the endosomal protein sorting nexin 5 (SNX5)3,4 is essential for virus-induced, but not for basal, stress- or endosome-induced, autophagy. We show that SNX5 deletion increases cellular susceptibility to viral infection in vitro, and that Snx5 knockout in mice enhances lethality after infection with several human viruses. Mechanistically, SNX5 interacts with beclin 1 and ATG14-containing class III phosphatidylinositol-3-kinase (PI3KC3) complex 1 (PI3KC3-C1), increases the lipid kinase activity of purified PI3KC3-C1, and is required for endosomal generation of phosphatidylinositol-3-phosphate (PtdIns(3)P) and recruitment of the PtdIns(3)P-binding protein WIPI2 to virion-containing endosomes. These findings identify a context- and organelle-specific mechanism-SNX5-dependent PI3KC3-C1 activation at endosomes-for initiation of autophagy during viral infection.


Subject(s)
Autophagy/immunology , Sorting Nexins/metabolism , Viruses/immunology , Animals , Autophagy/genetics , Autophagy-Related Proteins/metabolism , Beclin-1/metabolism , Cell Line , Class III Phosphatidylinositol 3-Kinases/metabolism , Endosomes/metabolism , Female , Humans , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , RNA, Small Interfering/genetics , Sorting Nexins/deficiency , Sorting Nexins/genetics , Vesicular Transport Proteins/metabolism
14.
Science ; 370(6518): 861-865, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33082294

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), uses the viral spike (S) protein for host cell attachment and entry. The host protease furin cleaves the full-length precursor S glycoprotein into two associated polypeptides: S1 and S2. Cleavage of S generates a polybasic Arg-Arg-Ala-Arg carboxyl-terminal sequence on S1, which conforms to a C-end rule (CendR) motif that binds to cell surface neuropilin-1 (NRP1) and NRP2 receptors. We used x-ray crystallography and biochemical approaches to show that the S1 CendR motif directly bound NRP1. Blocking this interaction by RNA interference or selective inhibitors reduced SARS-CoV-2 entry and infectivity in cell culture. NRP1 thus serves as a host factor for SARS-CoV-2 infection and may potentially provide a therapeutic target for COVID-19.


Subject(s)
Betacoronavirus/physiology , Neuropilin-1/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Amino Acid Motifs , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , COVID-19 , Caco-2 Cells , Coronavirus Infections/virology , Crystallography, X-Ray , Furin/metabolism , HeLa Cells , Humans , Mutagenesis, Site-Directed , Neuropilin-1/antagonists & inhibitors , Neuropilin-1/chemistry , Neuropilin-1/genetics , Pandemics , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Protein Binding , Protein Interaction Domains and Motifs , RNA Interference , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
15.
J Cell Sci ; 133(16)2020 08 25.
Article in English | MEDLINE | ID: mdl-32843536

ABSTRACT

The concentration of essential micronutrients, such as copper (used here to describe both Cu+ and Cu2+), within the cell is tightly regulated to avoid their adverse deficiency and toxicity effects. Retromer-mediated sorting and recycling of nutrient transporters within the endo-lysosomal network is an essential process in regulating nutrient balance. Cellular copper homeostasis is regulated primarily by two transporters: the copper influx transporter copper transporter 1 (CTR1; also known as SLC31A1), which controls the uptake of copper, and the copper-extruding ATPase ATP7A, a recognised retromer cargo. Here, we show that in response to fluctuating extracellular copper, retromer controls the delivery of CTR1 to the cell surface. Following copper exposure, CTR1 is endocytosed to prevent excessive copper uptake. We reveal that internalised CTR1 localises on retromer-positive endosomes and, in response to decreased extracellular copper, retromer controls the recycling of CTR1 back to the cell surface to maintain copper homeostasis. In addition to copper, CTR1 plays a central role in the trafficking of platinum. The efficacy of platinum-based cancer drugs has been correlated with CTR1 expression. Consistent with this, we demonstrate that retromer-deficient cells show reduced sensitivity to the platinum-based drug cisplatin.


Subject(s)
Cation Transport Proteins , Copper , Animals , Cation Transport Proteins/genetics , Cisplatin , Copper/metabolism , Copper Transporter 1 , Homeostasis
16.
J Cell Sci ; 133(15)2020 08 03.
Article in English | MEDLINE | ID: mdl-32747499

ABSTRACT

Human retromer, a heterotrimer of VPS26 (VPS26A or VPS26B), VPS35 and VPS29, orchestrates the endosomal retrieval of internalised cargo and promotes their cell surface recycling, a prototypical cargo being the glucose transporter GLUT1 (also known as SLC2A1). The role of retromer in the retrograde sorting of the cation-independent mannose 6-phosphate receptor (CI-MPR, also known as IGF2R) from endosomes back to the trans-Golgi network remains controversial. Here, by applying knocksideways technology, we develop a method for acute retromer inactivation. While retromer knocksideways in HeLa and H4 human neuroglioma cells resulted in time-resolved defects in cell surface sorting of GLUT1, we failed to observe a quantifiable defect in CI-MPR sorting. In contrast, knocksideways of the ESCPE-1 complex - a key regulator of retrograde CI-MPR sorting - revealed time-resolved defects in CI-MPR sorting. Together, these data are consistent with a comparatively limited role for retromer in ESCPE-1-mediated CI-MPR retrograde sorting, and establish a methodology for acute retromer and ESCPE-1 inactivation that will aid the time-resolved dissection of their functional roles in endosomal cargo sorting.


Subject(s)
Sorting Nexins , Vesicular Transport Proteins , Endosomes/metabolism , HeLa Cells , Humans , Protein Transport , Sorting Nexins/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , trans-Golgi Network/metabolism
17.
J Cell Sci ; 133(14)2020 07 15.
Article in English | MEDLINE | ID: mdl-32513819

ABSTRACT

The sorting nexins (SNXs) are a family of peripheral membrane proteins that direct protein trafficking decisions within the endocytic network. Emerging evidence in yeast and mammalian cells implicates a subgroup of SNXs in selective and non-selective forms of autophagy. Using siRNA and CRISPR-Cas9, we demonstrate that the SNX-BAR protein SNX4 is needed for efficient LC3 (also known as MAP1LC3) lipidation and autophagosome assembly in mammalian cells. SNX-BARs exist as homo- and hetero-dimers, and we show that SNX4 forms functional heterodimers with either SNX7 or SNX30 that associate with tubulovesicular endocytic membranes. Detailed image-based analysis during the early stages of autophagosome assembly reveals that SNX4-SNX7 is an autophagy-specific SNX-BAR heterodimer, required for efficient recruitment and/or retention of core autophagy regulators at the nascent isolation membrane. SNX4 partially colocalises with juxtanuclear ATG9A-positive membranes, with our data linking the autophagy defect upon SNX4 disruption to the mis-trafficking and/or retention of ATG9A in the Golgi region. Taken together, our findings show that the SNX4-SNX7 heterodimer coordinates ATG9A trafficking within the endocytic network to establish productive autophagosome assembly sites, thus extending knowledge of SNXs as positive regulators of autophagy.


Subject(s)
Autophagosomes , Endosomes , Sorting Nexins , Animals , Autophagosomes/metabolism , Autophagy , Endosomes/metabolism , Protein Transport , Sorting Nexins/genetics , Sorting Nexins/metabolism
18.
J Cell Biol ; 218(12): 3954-3966, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31694921

ABSTRACT

Endosomal recycling maintains the cell surface abundance of nutrient transporters for nutrient uptake, but how the cell integrates nutrient availability with recycling is less well understood. Here, in studying the recycling of human glutamine transporters ASCT2 (SLC1A5), LAT1 (SLC7A5), SNAT1 (SLC38A1), and SNAT2 (SLC38A2), we establish that following amino acid restriction, the adaptive delivery of SNAT2 to the cell surface relies on retromer, a master conductor of endosomal recycling. Upon complete amino acid starvation or selective glutamine depletion, we establish that retromer expression is upregulated by transcription factor EB (TFEB) and other members of the MiTF/TFE family of transcription factors through association with CLEAR elements in the promoters of the retromer genes VPS35 and VPS26A TFEB regulation of retromer expression therefore supports adaptive nutrient acquisition through endosomal recycling.


Subject(s)
Amino Acid Transport System A/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Endosomes/metabolism , Nutrients , Amino Acid Transport System ASC/metabolism , Animals , Cell Membrane/metabolism , Glutamine/metabolism , HEK293 Cells , HeLa Cells , Humans , Large Neutral Amino Acid-Transporter 1/metabolism , Male , Mice , Mice, Inbred C57BL , Minor Histocompatibility Antigens/metabolism , Promoter Regions, Genetic , Signal Transduction , Up-Regulation , Vesicular Transport Proteins/metabolism
19.
Nat Cell Biol ; 21(10): 1219-1233, 2019 10.
Article in English | MEDLINE | ID: mdl-31576058

ABSTRACT

Protein trafficking requires coat complexes that couple recognition of sorting motifs in transmembrane cargoes with biogenesis of transport carriers. The mechanisms of cargo transport through the endosomal network are poorly understood. Here, we identify a sorting motif for endosomal recycling of cargoes, including the cation-independent mannose-6-phosphate receptor and semaphorin 4C, by the membrane tubulating BAR domain-containing sorting nexins SNX5 and SNX6. Crystal structures establish that this motif folds into a ß-hairpin, which binds a site in the SNX5/SNX6 phox homology domains. Over sixty cargoes share this motif and require SNX5/SNX6 for their recycling. These include cargoes involved in neuronal migration and a Drosophila snx6 mutant displays defects in axonal guidance. These studies identify a sorting motif and provide molecular insight into an evolutionary conserved coat complex, the 'Endosomal SNX-BAR sorting complex for promoting exit 1' (ESCPE-1), which couples sorting motif recognition to the BAR-domain-mediated biogenesis of cargo-enriched tubulo-vesicular transport carriers.


Subject(s)
Endosomes/metabolism , Membrane Proteins/metabolism , Sorting Nexins/chemistry , Sorting Nexins/metabolism , Amino Acid Motifs/genetics , Animals , Drosophila melanogaster , HEK293 Cells , HeLa Cells , Humans , Protein Domains/genetics , Protein Transport/physiology , Receptor, IGF Type 2/chemistry , Receptor, IGF Type 2/metabolism , Semaphorins/genetics , Semaphorins/metabolism , Sorting Nexins/genetics
20.
Curr Opin Cell Biol ; 59: iii-v, 2019 08.
Article in English | MEDLINE | ID: mdl-31387786
SELECTION OF CITATIONS
SEARCH DETAIL
...