Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Rev ; 75(6): 1233-1318, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37586884

ABSTRACT

The NR superfamily comprises 48 transcription factors in humans that control a plethora of gene network programs involved in a wide range of physiologic processes. This review will summarize and discuss recent progress in NR biology and drug development derived from integrating various approaches, including biophysical techniques, structural studies, and translational investigation. We also highlight how defective NR signaling results in various diseases and disorders and how NRs can be targeted for therapeutic intervention via modulation via binding to synthetic lipophilic ligands. Furthermore, we also review recent studies that improved our understanding of NR structure and signaling. SIGNIFICANCE STATEMENT: Nuclear receptors (NRs) are ligand-regulated transcription factors that are critical regulators of myriad physiological processes. NRs serve as receptors for an array of drugs, and in this review, we provide an update on recent research into the roles of these drug targets.


Subject(s)
Pharmacology, Clinical , Humans , Receptors, Cytoplasmic and Nuclear/metabolism , Transcription Factors/metabolism , Carrier Proteins , Ligands
2.
Biomedicines ; 11(7)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37509548

ABSTRACT

Patients with end-stage liver disease exhibit progressive skeletal muscle atrophy, highlighting a negative crosstalk between the injured liver and muscle. Our study was to determine whether TGFß ligands function as the mediators. Acute or chronic liver injury was induced by a single or repeated administration of carbon tetrachloride. Skeletal muscle injury and repair was induced by intramuscular injection of cardiotoxin. Activin type IIB receptor (ActRIIB) ligands and growth differentiation factor 8 (Gdf8) were neutralized with ActRIIB-Fc fusion protein and a Gdf8-specific antibody, respectively. We found that acute hepatic injury induced rapid and adverse responses in muscle, which was blunted by neutralizing ActRIIB ligands. Chronic liver injury caused muscle atrophy and repair defects, which were prevented or reversed by inactivating ActRIIB ligands. Furthermore, we found that pericentral hepatocytes produce excessive Gdf8 in injured mouse liver and cirrhotic human liver. Specific inactivation of Gdf8 prevented liver injury-induced muscle atrophy, similar to neutralization of ActRIIB ligands. Inhibition of Gdf8 also reversed muscle atrophy in a treatment paradigm following chronic liver injury. Direct injection of exogenous Gdf8 protein into muscle along with acute focal muscle injury recapitulated similar dysregulated muscle regeneration as that observed with liver injury. The results indicate that injured liver negatively communicate with the muscle largely via Gdf8. Unexpectedly, inactivation of Gdf8 simultaneously ameliorated liver fibrosis in mice following chronic liver injury. In vitro, Gdf8 induced human hepatic stellate (LX-2) cells to form a septa-like structure and stimulated expression of profibrotic factors. Our findings identified Gdf8 as a novel hepatomyokine contributing to injured liver-muscle negative crosstalk along with liver injury progression.

3.
Hepatol Commun ; 6(10): 2812-2826, 2022 10.
Article in English | MEDLINE | ID: mdl-35866567

ABSTRACT

The role of activin B, a transforming growth factor ß (TGFß) superfamily cytokine, in liver health and disease is largely unknown. We aimed to investigate whether activin B modulates liver fibrogenesis. Liver and serum activin B, along with its analog activin A, were analyzed in patients with liver fibrosis from different etiologies and in mouse acute and chronic liver injury models. Activin B, activin A, or both was immunologically neutralized in mice with progressive or established carbon tetrachloride (CCl4 )-induced liver fibrosis. Hepatic and circulating activin B was increased in human patients with liver fibrosis caused by several liver diseases. In mice, hepatic and circulating activin B exhibited persistent elevation following the onset of several types of liver injury, whereas activin A displayed transient increases. The results revealed a close correlation of activin B with liver injury regardless of etiology and species. Injured hepatocytes produced excessive activin B. Neutralizing activin B largely prevented, as well as improved, CCl4 -induced liver fibrosis, which was augmented by co-neutralizing activin A. Mechanistically, activin B mediated the activation of c-Jun-N-terminal kinase (JNK), the induction of inducible nitric oxide synthase (iNOS) expression, and the maintenance of poly (ADP-ribose) polymerase 1 (PARP1) expression in injured livers. Moreover, activin B directly induced a profibrotic expression profile in hepatic stellate cells (HSCs) and stimulated these cells to form a septa structure. Conclusions: We demonstrate that activin B, cooperating with activin A, mediates the activation or expression of JNK, iNOS, and PARP1 and the activation of HSCs, driving the initiation and progression of liver fibrosis.


Subject(s)
Carbon Tetrachloride , Ribose , Activins , Adenosine Diphosphate/adverse effects , Animals , Carbon Tetrachloride/toxicity , Humans , Liver Cirrhosis/chemically induced , Mice , Nitric Oxide Synthase Type II/metabolism , Ribose/adverse effects , Transforming Growth Factor beta/adverse effects
4.
J Cachexia Sarcopenia Muscle ; 12(5): 1232-1248, 2021 10.
Article in English | MEDLINE | ID: mdl-34342159

ABSTRACT

BACKGROUND: Type 2 diabetes and obesity are often seen concurrently with skeletal muscle wasting, leading to further derangements in function and metabolism. Muscle wasting remains an unmet need for metabolic disease, and new approaches are warranted. The neuropeptide urocortin 2 (UCN2) and its receptor corticotropin releasing factor receptor 2 (CRHR2) are highly expressed in skeletal muscle and play a role in regulating energy balance, glucose metabolism, and muscle mass. The aim of this study was to investigate the effects of modified UCN2 peptides as a pharmaceutical therapy to counteract the loss of skeletal muscle mass associated with obesity and casting immobilization. METHODS: High-fat-fed mice (C57Bl/6J; 26 weeks old) and ob/ob mice (11 weeks old) were injected daily with a PEGylated (Compound A) and non-PEGylated (Compound B) modified human UCN2 at 0.3 mg/kg subcutaneously for 14 days. A separate group of chow-fed C57Bl/6J mice (12 weeks old) was subjected to hindlimb cast immobilization and, after 1 week, received daily injections with Compound A. In vivo functional tests were performed to measure protein synthesis rates and skeletal muscle function. Ex vivo functional and molecular tests were performed to measure contractile force and signal transduction of catabolic and anabolic pathways in skeletal muscle. RESULTS: Skeletal muscles (extensor digitorum longus, soleus, and tibialis anterior) from high-fat-fed mice treated with Compound A were ~14% heavier than muscles from vehicle-treated mice. Chronic treatment with modified UCN2 peptides altered the expression of structural genes and transcription factors in skeletal muscle in high-fat diet-induced obesity including down-regulation of Trim63 and up-regulation of Nr4a2 and Igf1 (P < 0.05 vs. vehicle). Signal transduction via both catabolic and anabolic pathways was increased in tibialis anterior muscle, with increased phosphorylation of ribosomal protein S6 at Ser235/236 , FOXO1 at Ser256 , and ULK1 at Ser317 , suggesting that UCN2 treatment modulates protein synthesis and degradation pathways (P < 0.05 vs. vehicle). Acutely, a single injection of Compound A in drug-naïve mice had no effect on the rate of protein synthesis in skeletal muscle, as measured via the surface sensing of translation method, while the expression of Nr4a3 and Ppargc1a4 was increased (P < 0.05 vs. vehicle). Compound A treatment prevented the loss of force production from disuse due to casting. Compound B treatment increased time to fatigue during ex vivo contractions of fast-twitch extensor digitorum longus muscle. Compound A and B treatment increased lean mass and rates of skeletal muscle protein synthesis in ob/ob mice. CONCLUSIONS: Modified human UCN2 is a pharmacological candidate for the prevention of the loss of skeletal muscle mass associated with obesity and immobilization.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Mice , Mice, Inbred C57BL , Muscle, Skeletal , Obesity/drug therapy , Obesity/etiology , Peptides , Urocortins
5.
AoB Plants ; 11(5): plz053, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31579109

ABSTRACT

Some plant species accumulate selenium in their tissues in quantities far above soil concentrations, and experiments demonstrate that selenium can serve as a defence against herbivores and pathogens. However, selenium may also cause oxidative stress and reduce growth in plants. We measured growth, selenium accumulation and herbivory in four varieties of the selenium accumulator Brassica juncea to investigate the cost of accumulation as well as its benefit in reducing herbivory. We measured selenium levels, plant size and flower number in four varieties of B. juncea watered with sodium selenate or treated as controls. We also conducted no-choice herbivory trials on leaves from both treatments with the specialist herbivore Pieris rapae. The selenate treatment slightly increased leaf number over the control, but tissue concentrations of selenium and flower number were negatively correlated in some varieties. In herbivory trials, leaves from the plants in the selenate treatment lost less leaf tissue, and the majority of larvae given leaves from selenate-treated plants ate very little leaf tissue at all. In the variety with the highest selenium accumulation, leaves from selenate-treated plants that showed reduced flower production also experienced less herbivory in feeding trials. The protective advantage of greater selenium accumulation may be offset by negative effects on reproduction, and the relatively low level of selenium accumulation in this species as compared to more extreme hyperaccumulators could reflect the minimum level necessary to enhance protection from herbivory.

6.
Muscle Nerve ; 54(6): 1120-1132, 2016 12.
Article in English | MEDLINE | ID: mdl-27074419

ABSTRACT

INTRODUCTION: There is evidence that supports a role for Vitamin D (Vit. D) in muscle. The exact mechanism by which Vit. D deficiency impairs muscle strength and function is not clear. METHODS: Three-week-old mice were fed diets with varied combinations of Vit. D and Ca2+ deficiency. Behavioral testing, genomic and protein analysis, and muscle histology were performed with a focus on neuromuscular junction (NMJ) -related genes. RESULTS: Vit. D and Ca2+ deficient mice performed more poorly on given behavioral tasks than animals with Vit. D deficiency alone. Genomic and protein analysis of the soleus and tibialis anterior muscles revealed changes in several Vit. D metabolic, NMJ-related, and protein chaperoning and refolding genes. CONCLUSIONS: These data suggest that detrimental effects of a Vit. D deficient or a Vit. D and Ca2+ deficient diet may be a result of differential alterations in the structure and function of the NMJ and a lack of a sustained stress response in muscles. Muscle Nerve 54: 1120-1132, 2016.


Subject(s)
Ascorbic Acid Deficiency/pathology , Diet/adverse effects , Gene Expression Regulation/physiology , Hindlimb/pathology , Muscle Fibers, Skeletal/physiology , Neuromuscular Junction/physiopathology , Age Factors , Animals , Ascorbic Acid Deficiency/blood , Ascorbic Acid Deficiency/etiology , Ascorbic Acid Deficiency/metabolism , Calcium/metabolism , Disease Models, Animal , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Locomotion , Male , Mice , Mice, Inbred C57BL , Muscle Strength , Parathyroid Hormone/blood , Phosphorus/blood , Postural Balance , Psychomotor Performance , Vitamin D/metabolism
7.
Am J Pathol ; 184(4): 1152-66, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24655377

ABSTRACT

Activin A, a member of the transforming growth factor-ß superfamily, provides pleiotropic regulation of fibrosis and inflammation. We aimed at determining whether selective inhibition of activin A would provide a regenerative benefit. The introduction of activin A into normal muscle increased the expression of inflammatory and muscle atrophy genes Tnf, Tnfrsf12a, Trim63, and Fbxo32 by 3.5-, 10-, 2-, and 4-fold, respectively. The data indicate a sensitive response of muscle to activin A. Two hours after cardiotoxin-induced muscle damage, local activin A protein expression increased by threefold to ninefold. Neutralization of activin A with a specific monoclonal antibody in this muscle injury model decreased the muscle protein levels of lymphotoxin α and Il17a by 32% and 42%, respectively. Muscle histopathological features showed that activin A antibody-treated mice displayed an increase in muscle degradation, with the concomitant 9.2-fold elevation in F4/80-positive cells 3 days after injury. At the same time, the number of Pax7/Myod1-positive cells also increased, indicative of potentiated muscle precursor activation. Ultimately, activin A inhibition resulted in rapid recovery of muscle contractile properties indicated by a restoration of maximum and specific force. In summary, selective inhibition of activin A with a monoclonal antibody in muscle injury leads to the early onset of tissue degradation and subsequent enhanced myogenesis, thereby accelerating muscle repair and functional recovery.


Subject(s)
Activins/antagonists & inhibitors , Muscle Contraction/physiology , Muscle, Skeletal/injuries , Muscle, Skeletal/metabolism , Animals , Electroporation , Enzyme-Linked Immunosorbent Assay , Female , Immunohistochemistry , Mice, Inbred C57BL , Regeneration/physiology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...