Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 15(1): e0199923, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38085021

ABSTRACT

IMPORTANCE: Bacteria known as pink-pigmented facultative methylotrophs colonize many diverse environments on earth, play an important role in the carbon cycle, and in some cases promote plant growth. However, little is known about how these organisms interact with each other and their environment. In this work, we identify one of the chemical signals commonly used by these bacteria and discover that this signal controls swarming motility in the pink-pigmented facultative methylotroph Methylobacterium fujisawaense DSM5686. This work provides new molecular details about interactions between these important bacteria and will help scientists predict these interactions and the group behaviors they regulate from genomic sequencing information.


Subject(s)
Methylobacterium , Quorum Sensing , Acyl-Butyrolactones , Methylobacterium/genetics
2.
mBio ; 14(4): e0101023, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37227303

ABSTRACT

Members of the genus Mesorhizobium, which are core components of the rhizosphere and specific symbionts of legume plants, possess genes for acyl-homoserine lactone (AHL) quorum sensing (QS). Here we show Mesorhizobium japonicum MAFF 303099 (formerly M. loti) synthesizes and responds to N-[(2E, 4E)-2,4-dodecadienoyl] homoserine lactone (2E, 4E-C12:2-HSL). We show that the 2E, 4E-C12:2-HSL QS circuit involves one of four luxR-luxI-type genes found in the sequenced genome of MAFF 303099. We refer to this circuit, which appears to be conserved among Mesorhizobium species, as R1-I1. We show that two other Mesorhizobium strains also produce 2E, 4E-C12:2-HSL. The 2E, 4E-C12:2-HSL is unique among known AHLs in its arrangement of two trans double bonds. The R1 response to 2E, 4E-C12:2-HSL is extremely selective in comparison with other LuxR homologs, and the trans double bonds appear critical for R1 signal recognition. Most well-studied LuxI-like proteins use S-adenosylmethionine and an acyl-acyl carrier protein as substrates for synthesis of AHLs. Others that form a subgroup of LuxI-type proteins use acyl-coenzyme A substrates rather than acyl-acyl carrier proteins. I1 clusters with the acyl-coenzyme A-type AHL synthases. We show that a gene linked to the I1 AHL synthase is involved in the production of the QS signal. The discovery of the unique I1 product enforces the view that further study of acyl-coenzyme A-dependent LuxI homologs will expand our knowledge of AHL diversity. The involvement of an additional enzyme in AHL generation leads us to consider this system a three-component QS circuit. IMPORTANCE We report a Mesorhizobium japonicum quorum sensing (QS) system involving a novel acyl-homoserine lactone (AHL) signal. This system is known to be involved in root nodule symbiosis with host plants. The chemistry of the newly described QS signal indicated that there may be a dedicated cellular enzyme involved in its synthesis in addition to the types known for production of other AHLs. Indeed, we report that an additional gene is required for synthesis of the unique signal, and we propose that this is a three-component QS circuit as opposed to the canonical two-component AHL QS circuits. The signaling system is exquisitely selective. The selectivity may be important when this species resides in the complex microbial communities around host plants and may make this system useful in various synthetic biology applications of QS circuits.


Subject(s)
Mesorhizobium , Quorum Sensing , Quorum Sensing/genetics , Acyl-Butyrolactones/metabolism , Mesorhizobium/genetics , Mesorhizobium/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Trans-Activators/genetics , Coenzyme A
4.
ACS Chem Biol ; 16(8): 1332-1338, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34328722

ABSTRACT

Natural products are an essential source of bioactive compounds. Isotopic labeling is an effective way to identify natural products that incorporate a specific precursor; however, this approach is limited by the availability of isotopically enriched precursors. We used an inverse stable isotopic labeling approach to identify natural products by growing bacteria on a 13C-carbon source and then identifying 12C-precursor incorporation by mass spectrometry. We applied this approach to methylotrophs, ecologically important bacteria predicted to have significant yet underexplored biosynthetic potential. We demonstrate that this method identifies N-acyl homoserine lactone quorum sensing signals produced by diverse methylotrophs grown on three different one-carbon compounds. We then apply this approach to simultaneously detect five previously unidentified signals produced by a methylotroph and link these compounds to their synthases. We envision that this method can be used to identify other natural product classes synthesized by methylotrophs and other organisms that grow on relatively inexpensive 13C-carbon sources.


Subject(s)
Acyl-Butyrolactones/analysis , Quorum Sensing/physiology , Acyl-Butyrolactones/chemistry , Carbon/chemistry , Carbon Isotopes/chemistry , Isotope Labeling/methods , Methylobacteriaceae/chemistry , Methylobacteriaceae/physiology , Methylococcaceae/chemistry , Methylococcaceae/physiology , Proof of Concept Study
SELECTION OF CITATIONS
SEARCH DETAIL
...