Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
NPJ Syst Biol Appl ; 10(1): 44, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678051

ABSTRACT

Malaria vaccine development is hampered by extensive antigenic variation and complex life stages of Plasmodium species. Vaccine development has focused on a small number of antigens, many of which were identified without utilizing systematic genome-level approaches. In this study, we implement a machine learning-based reverse vaccinology approach to predict potential new malaria vaccine candidate antigens. We assemble and analyze P. falciparum proteomic, structural, functional, immunological, genomic, and transcriptomic data, and use positive-unlabeled learning to predict potential antigens based on the properties of known antigens and remaining proteins. We prioritize candidate antigens based on model performance on reference antigens with different genetic diversity and quantify the protein properties that contribute most to identifying top candidates. Candidate antigens are characterized by gene essentiality, gene ontology, and gene expression in different life stages to inform future vaccine development. This approach provides a framework for identifying and prioritizing candidate vaccine antigens for a broad range of pathogens.


Subject(s)
Antigens, Protozoan , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Plasmodium falciparum/immunology , Plasmodium falciparum/genetics , Malaria Vaccines/immunology , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Machine Learning , Humans , Proteomics/methods , Vaccine Development/methods , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Computational Biology/methods
2.
J Control Release ; 362: 371-380, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37657693

ABSTRACT

Effective eye drop delivery systems for treating diseases of the posterior segment have yet to be clinically validated. Further, adherence to eye drop regimens is often problematic due to the difficulty and inconvenience of repetitive dosing. Here, we describe a strategy for topically dosing a peptide-drug conjugate to achieve effective and sustained therapeutic sunitinib concentrations to protect retinal ganglion cells (RGCs) in a rat model of optic nerve injury. We combined two promising delivery technologies, namely, a hypotonic gel-forming eye drop delivery system, and an engineered melanin binding and cell-penetrating peptide that sustains intraocular drug residence time. We found that once daily topical dosing of HR97-SunitiGel provided up to 2 weeks of neuroprotection after the last dose, effectively doubling the therapeutic window observed with SunitiGel. For chronic ocular diseases affecting the posterior segment, the convenience of an eye drop combined with intermittent dosing frequency could result in greater patient adherence, and thus, improved disease management.

3.
Nat Commun ; 14(1): 2509, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37130851

ABSTRACT

Sustained drug delivery strategies have many potential benefits for treating a range of diseases, particularly chronic diseases that require treatment for years. For many chronic ocular diseases, patient adherence to eye drop dosing regimens and the need for frequent intraocular injections are significant barriers to effective disease management. Here, we utilize peptide engineering to impart melanin binding properties to peptide-drug conjugates to act as a sustained-release depot in the eye. We develop a super learning-based methodology to engineer multifunctional peptides that efficiently enter cells, bind to melanin, and have low cytotoxicity. When the lead multifunctional peptide (HR97) is conjugated to brimonidine, an intraocular pressure lowering drug that is prescribed for three times per day topical dosing, intraocular pressure reduction is observed for up to 18 days after a single intracameral injection in rabbits. Further, the cumulative intraocular pressure lowering effect increases ~17-fold compared to free brimonidine injection. Engineered multifunctional peptide-drug conjugates are a promising approach for providing sustained therapeutic delivery in the eye and beyond.


Subject(s)
Drug Delivery Systems , Melanins , Animals , Rabbits , Brimonidine Tartrate , Peptides , Machine Learning
4.
R Soc Open Sci ; 10(3): 220939, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36998763

ABSTRACT

Platyhelminthes (flatworms) are a diverse invertebrate phylum useful for exploring life-history evolution. Within Platyhelminthes, only two clades develop through a larval stage: free-living polyclads and parasitic neodermatans. Neodermatan larvae are considered evolutionarily derived, whereas polyclad larvae are hypothesized to be ancestral due to ciliary band similarities among polyclad and other spiralian larvae. However, larval evolution has been challenging to investigate within polyclads due to low support for deeper phylogenetic relationships. To investigate polyclad life-history evolution, we generated transcriptomic data for 21 species of polyclads to build a well-supported phylogeny for the group. The resulting tree provides strong support for deeper nodes, and we recover a new monophyletic clade of early branching cotyleans. We then used ancestral state reconstructions to investigate ancestral modes of development within Polycladida and more broadly within flatworms. In polyclads, we were unable to reconstruct the ancestral state of deeper nodes with significant support because early branching clades show diverse modes of development. This suggests a complex history of larval evolution in polyclads that likely includes multiple losses and/or multiple gains. However, our ancestral state reconstruction across a previously published platyhelminth phylogeny supports a direct developing prorhynchid/polyclad ancestor, which suggests that a larval stage in the life cycle evolved along the polyclad stem lineage or within polyclads.

5.
Bioinformatics ; 37(18): 2848-2857, 2021 09 29.
Article in English | MEDLINE | ID: mdl-33792639

ABSTRACT

MOTIVATION: Microbial gene catalogs are data structures that organize genes found in microbial communities, providing a reference for standardized analysis of the microbes across samples and studies. Although gene catalogs are commonly used, they have not been critically evaluated for their effectiveness as a basis for metagenomic analyses. RESULTS: As a case study, we investigate one such catalog, the Integrated Gene Catalog (IGC), however, our observations apply broadly to most gene catalogs constructed to date. We focus on both the approach used to construct this catalog and on its effectiveness when used as a reference for microbiome studies. Our results highlight important limitations of the approach used to construct the IGC and call into question the broad usefulness of gene catalogs more generally. We also recommend best practices for the construction and use of gene catalogs in microbiome studies and highlight opportunities for future research. AVAILABILITY AND IMPLEMENTATION: All supporting scripts for our analyses can be found on GitHub: https://github.com/SethCommichaux/IGC.git. The supporting data can be downloaded from: https://obj.umiacs.umd.edu/igc-analysis/IGC_analysis_data.tar.gz. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Metagenome , Microbiota , Microbiota/genetics , Metagenomics
6.
Syst Biol ; 68(6): 1052-1061, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31034053

ABSTRACT

BEAGLE is a high-performance likelihood-calculation library for phylogenetic inference. The BEAGLE library defines a simple, but flexible, application programming interface (API), and includes a collection of efficient implementations for calculation under a variety of evolutionary models on different hardware devices. The library has been integrated into recent versions of popular phylogenetics software packages including BEAST and MrBayes and has been widely used across a diverse range of evolutionary studies. Here, we present BEAGLE 3 with new parallel implementations, increased performance for challenging data sets, improved scalability, and better usability. We have added new OpenCL and central processing unit-threaded implementations to the library, allowing the effective utilization of a wider range of modern hardware. Further, we have extended the API and library to support concurrent computation of independent partial likelihood arrays, for increased performance of nucleotide-model analyses with greater flexibility of data partitioning. For better scalability and usability, we have improved how phylogenetic software packages use BEAGLE in multi-GPU (graphics processing unit) and cluster environments, and introduced an automated method to select the fastest device given the data set, evolutionary model, and hardware. For application developers who wish to integrate the library, we also have developed an online tutorial. To evaluate the effect of the improvements, we ran a variety of benchmarks on state-of-the-art hardware. For a partitioned exemplar analysis, we observe run-time performance improvements as high as 5.9-fold over our previous GPU implementation. BEAGLE 3 is free, open-source software licensed under the Lesser GPL and available at https://beagle-dev.github.io.


Subject(s)
Classification/methods , Software/standards , Data Interpretation, Statistical , Phylogeny
7.
Front Zool ; 15: 43, 2018.
Article in English | MEDLINE | ID: mdl-30473719

ABSTRACT

BACKGROUND: A number of shelled and shell-less gastropods are known to use multiple defensive mechanisms, including internally generated or externally obtained biochemically active compounds and structures. Within Nudipleura, nudibranchs within Cladobranchia possess such a special defense: the ability to sequester cnidarian nematocysts - small capsules that can inject venom into the tissues of other organisms. This ability is distributed across roughly 600 species within Cladobranchia, and many questions still remain in regard to the comparative morphology and evolution of the cnidosac - the structure that houses sequestered nematocysts (called kleptocnides). In this paper, we describe cnidosac morphology across the main groups of Cladobranchia in which it occurs, and place variation in its structure in a phylogenetic context to better understand the evolution of nematocyst sequestration. RESULTS: Overall, we find that the length, size and structure of the entrance to the cnidosac varies more than expected based on previous work, as does the structure of the exit, the musculature surrounding the cnidosac, and the position and orientation of the kleptocnides. The sequestration of nematocysts has originated at least twice within Cladobranchia based on the phylogeny presented here using 94 taxa and 409 genes. CONCLUSIONS: The cnidosac is not homologous to cnidosac-like structures found in Hancockiidae. Additionally, the presence of a sac at the distal end of the digestive gland may have originated prior to the sequestration of nematocysts. This study provides a more complete picture of variation in, and evolution of, morphological characters associated with nematocyst sequestration in Cladobranchia.

8.
BMC Evol Biol ; 17(1): 221, 2017 Oct 26.
Article in English | MEDLINE | ID: mdl-29073890

ABSTRACT

BACKGROUND: The impact of predator-prey interactions on the evolution of many marine invertebrates is poorly understood. Since barriers to genetic exchange are less obvious in the marine realm than in terrestrial or freshwater systems, non-allopatric divergence may play a fundamental role in the generation of biodiversity. In this context, shifts between major prey types could constitute important factors explaining the biodiversity of marine taxa, particularly in groups with highly specialized diets. However, the scarcity of marine specialized consumers for which reliable phylogenies exist hampers attempts to test the role of trophic specialization in evolution. In this study, RNA-Seq data is used to produce a phylogeny of Cladobranchia, a group of marine invertebrates that feed on a diverse array of prey taxa but mostly specialize on cnidarians. The broad range of prey type preferences allegedly present in two major groups within Cladobranchia suggest that prey type shifts are relatively common over evolutionary timescales. RESULTS: In the present study, we generated a well-supported phylogeny of the major lineages within Cladobranchia using RNA-Seq data, and used ancestral state reconstruction analyses to better understand the evolution of prey preference. These analyses answered several fundamental questions regarding the evolutionary relationships within Cladobranchia, including support for a clade of species from Arminidae as sister to Tritoniidae (which both preferentially prey on Octocorallia). Ancestral state reconstruction analyses supported a cladobranchian ancestor with a preference for Hydrozoa and show that the few transitions identified only occur from lineages that prey on Hydrozoa to those that feed on other types of prey. CONCLUSIONS: There is strong phylogenetic correlation with prey preference within Cladobranchia, suggesting that prey type specialization within this group has inertia. Shifts between different types of prey have occurred rarely throughout the evolution of Cladobranchia, indicating that this may not have been an important driver of the diversity within this group.


Subject(s)
Biological Evolution , Cnidaria/genetics , Food Chain , Gastropoda/genetics , Animals , Cnidaria/classification , Gastropoda/classification , Gastropoda/physiology , Phylogeny , Sequence Analysis, RNA
9.
J Infect Dis ; 216(4): 468-476, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28931241

ABSTRACT

Background: Amplified copy number in the plasmepsin II/III genes within Plasmodium falciparum has been associated with decreased sensitivity to piperaquine. To examine this association and test whether additional loci might also contribute, we performed a genome-wide association study of ex vivo P. falciparum susceptibility to piperaquine. Methods: Plasmodium falciparum DNA from 183 samples collected primarily from Cambodia was genotyped at 33716 genome-wide single nucleotide polymorphisms (SNPs). Linear mixed models and random forests were used to estimate associations between parasite genotypes and piperaquine susceptibility. Candidate polymorphisms were evaluated for their association with dihydroartemisinin-piperaquine treatment outcomes in an independent dataset. Results: Single nucleotide polymorphisms on multiple chromosomes were associated with piperaquine 90% inhibitory concentrations (IC90) in a genome-wide analysis. Fine-mapping of genomic regions implicated in genome-wide analyses identified multiple SNPs in linkage disequilibrium with each other that were significantly associated with piperaquine IC90, including a novel mutation within the gene encoding the P. falciparum chloroquine resistance transporter, PfCRT. This mutation (F145I) was associated with dihydroartemisinin-piperaquine treatment failure after adjusting for the presence of amplified plasmepsin II/III, which was also associated with decreased piperaquine sensitivity. Conclusions: Our data suggest that, in addition to plasmepsin II/III copy number, other loci, including pfcrt, may also be involved in piperaquine resistance.


Subject(s)
Drug Resistance/genetics , Membrane Transport Proteins/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Quinolines/pharmacology , Artemisinins/pharmacology , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Cambodia , DNA Copy Number Variations , DNA, Protozoan/genetics , Genetic Loci , Genome-Wide Association Study , Genotyping Techniques , Humans , Inhibitory Concentration 50 , Linkage Disequilibrium , Membrane Transport Proteins/metabolism , Mutation , Plasmodium falciparum/drug effects , Polymorphism, Single Nucleotide , Proportional Hazards Models , Protozoan Proteins/metabolism , Sensitivity and Specificity , Treatment Failure
10.
Microbiome ; 5(1): 11, 2017 01 25.
Article in English | MEDLINE | ID: mdl-28122610

ABSTRACT

BACKGROUND: Microbiome sequencing projects typically collect tens of millions of short reads per sample. Depending on the goals of the project, the short reads can either be subjected to direct sequence analysis or be assembled into longer contigs. The assembly of whole genomes from metagenomic sequencing reads is a very difficult problem. However, for some questions, only specific genes of interest need to be assembled. This is then a gene-centric assembly where the goal is to assemble reads into contigs for a family of orthologous genes. METHODS: We present a new method for performing gene-centric assembly, called protein-alignment-guided assembly, and provide an implementation in our metagenome analysis tool MEGAN. Genes are assembled on the fly, based on the alignment of all reads against a protein reference database such as NCBI-nr. Specifically, the user selects a gene family based on a classification such as KEGG and all reads binned to that gene family are assembled. RESULTS: Using published synthetic community metagenome sequencing reads and a set of 41 gene families, we show that the performance of this approach compares favorably with that of full-featured assemblers and that of a recently published HMM-based gene-centric assembler, both in terms of the number of reference genes detected and of the percentage of reference sequence covered. CONCLUSIONS: Protein-alignment-guided assembly of orthologous gene families complements whole-metagenome assembly in a new and very useful way.


Subject(s)
Computational Biology/methods , Metagenomics/methods , Microbiota , Sequence Alignment , Software , Algorithms , Amino Acid Sequence , High-Throughput Nucleotide Sequencing , Humans , Metagenome , Sequence Analysis, DNA/methods
11.
Annu Rev Entomol ; 62: 265-283, 2017 01 31.
Article in English | MEDLINE | ID: mdl-27860521

ABSTRACT

Until recently, deep-level phylogeny in Lepidoptera, the largest single radiation of plant-feeding insects, was very poorly understood. Over the past two decades, building on a preceding era of morphological cladistic studies, molecular data have yielded robust initial estimates of relationships both within and among the ∼43 superfamilies, with unsolved problems now yielding to much larger data sets from high-throughput sequencing. Here we summarize progress on lepidopteran phylogeny since 1975, emphasizing the superfamily level, and discuss some resulting advances in our understanding of lepidopteran evolution.


Subject(s)
Biological Evolution , Lepidoptera/classification , Phylogeny , Animals , Evolution, Molecular , Lepidoptera/genetics
12.
R Soc Open Sci ; 2(9): 150196, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26473045

ABSTRACT

Cladobranchia (Gastropoda: Nudibranchia) is a diverse (approx. 1000 species) but understudied group of sea slug molluscs. In order to fully comprehend the diversity of nudibranchs and the evolution of character traits within Cladobranchia, a solid understanding of evolutionary relationships is necessary. To date, only two direct attempts have been made to understand the evolutionary relationships within Cladobranchia, neither of which resulted in well-supported phylogenetic hypotheses. In addition to these studies, several others have addressed some of the relationships within this clade while investigating the evolutionary history of more inclusive groups (Nudibranchia and Euthyneura). However, all of the resulting phylogenetic hypotheses contain conflicting topologies within Cladobranchia. In this study, we address some of these long-standing issues regarding the evolutionary history of Cladobranchia using RNA-Seq data (transcriptomes). We sequenced 16 transcriptomes and combined these with four transcriptomes from the NCBI Sequence Read Archive. Transcript assembly using Trinity and orthology determination using HaMStR yielded 839 orthologous groups for analysis. These data provide a well-supported and almost fully resolved phylogenetic hypothesis for Cladobranchia. Our results support the monophyly of Cladobranchia and the sub-clade Aeolidida, but reject the monophyly of Dendronotida.

13.
J Infect Dis ; 211(5): 670-9, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25180241

ABSTRACT

BACKGROUND: The emergence of artemisinin-resistant Plasmodium falciparum in Southeast Asia threatens malaria treatment efficacy. Mutations in a kelch protein encoded on P. falciparum chromosome 13 (K13) have been associated with resistance in vitro and in field samples from Cambodia. METHODS: P. falciparum infections from artesunate efficacy trials in Bangladesh, Cambodia, Laos, Myanmar, and Vietnam were genotyped at 33 716 genome-wide single-nucleotide polymorphisms (SNPs). Linear mixed models were used to test associations between parasite genotypes and parasite clearance half-lives following artesunate treatment. K13 mutations were tested for association with artemisinin resistance, and extended haplotypes on chromosome 13 were examined to determine whether mutations arose focally and spread or whether they emerged independently. RESULTS: The presence of nonreference K13 alleles was associated with prolonged parasite clearance half-life (P = 1.97 × 10(-12)). Parasites with a mutation in any of the K13 kelch domains displayed longer parasite clearance half-lives than parasites with wild-type alleles. Haplotype analysis revealed both population-specific emergence of mutations and independent emergence of the same mutation in different geographic areas. CONCLUSIONS: K13 appears to be a major determinant of artemisinin resistance throughout Southeast Asia. While we found some evidence of spreading resistance, there was no evidence of resistance moving westward from Cambodia into Myanmar.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance , Malaria, Falciparum/parasitology , Mutation , Plasmodium falciparum/drug effects , Asia, Southeastern , Genotype , Humans , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Polymorphism, Single Nucleotide , Protozoan Proteins/genetics
14.
Infect Genet Evol ; 30: 318-322, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25514047

ABSTRACT

Multiple transcontinental waves of drug resistance in Plasmodium falciparum have originated in Southeast Asia before spreading westward, first into the rest of Asia and then to sub-Saharan Africa. In vitro studies have suggested that hypermutator P. falciparum parasites may exist in Southeast Asia and that an increased rate of acquisition of new mutations in these parasites may explain the repeated emergence of drug resistance in Southeast Asia. This study is the first to test the hypermutator hypothesis using field isolates. Using genome-wide SNP data from human P. falciparum infections in Southeast Asia and West Africa and a test for relative rate differences we found no evidence of increased relative substitution rates in P. falciparum isolates from Southeast Asia. Instead, we found significantly increased substitution rates in Mali and Bangladesh populations relative to those in populations from Southeast Asia. Additionally we found no association between increased relative substitution rates and parasite clearance following treatment with artemisinin derivatives.


Subject(s)
Antimalarials/pharmacology , Drug Resistance/genetics , Malaria, Falciparum/parasitology , Mutation Rate , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Artemisinins/pharmacology , Asia, Southeastern/epidemiology , DNA, Protozoan/analysis , DNA, Protozoan/genetics , Humans , Malaria, Falciparum/epidemiology , Phenotype , Sequence Analysis, DNA
15.
Syst Biol ; 63(5): 812-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24789072

ABSTRACT

We introduce molecularevolution.org, a publicly available gateway for high-throughput, maximum-likelihood phylogenetic analysis powered by grid computing. The gateway features a garli 2.0 web service that enables a user to quickly and easily submit thousands of maximum likelihood tree searches or bootstrap searches that are executed in parallel on distributed computing resources. The garli web service allows one to easily specify partitioned substitution models using a graphical interface, and it performs sophisticated post-processing of phylogenetic results. Although the garli web service has been used by the research community for over three years, here we formally announce the availability of the service, describe its capabilities, highlight new features and recent improvements, and provide details about how the grid system efficiently delivers high-quality phylogenetic results.


Subject(s)
Classification/methods , Phylogeny , Software , Access to Information , Internet
16.
PLoS One ; 8(12): e82615, 2013.
Article in English | MEDLINE | ID: mdl-24324810

ABSTRACT

Recent molecular phylogenetic studies of the insect order Lepidoptera have robustly resolved family-level divergences within most superfamilies, and most divergences among the relatively species-poor early-arising superfamilies. In sharp contrast, relationships among the superfamilies of more advanced moths and butterflies that comprise the mega-diverse clade Apoditrysia (ca. 145,000 spp.) remain mostly poorly supported. This uncertainty, in turn, limits our ability to discern the origins, ages and evolutionary consequences of traits hypothesized to promote the spectacular diversification of Apoditrysia. Low support along the apoditrysian "backbone" probably reflects rapid diversification. If so, it may be feasible to strengthen resolution by radically increasing the gene sample, but case studies have been few. We explored the potential of next-generation sequencing to conclusively resolve apoditrysian relationships. We used transcriptome RNA-Seq to generate 1579 putatively orthologous gene sequences across a broad sample of 40 apoditrysians plus four outgroups, to which we added two taxa from previously published data. Phylogenetic analysis of a 46-taxon, 741-gene matrix, resulting from a strict filter that eliminated ortholog groups containing any apparent paralogs, yielded dramatic overall increase in bootstrap support for deeper nodes within Apoditrysia as compared to results from previous and concurrent 19-gene analyses. High support was restricted mainly to the huge subclade Obtectomera broadly defined, in which 11 of 12 nodes subtending multiple superfamilies had bootstrap support of 100%. The strongly supported nodes showed little conflict with groupings from previous studies, and were little affected by changes in taxon sampling, suggesting that they reflect true signal rather than artifacts of massive gene sampling. In contrast, strong support was seen at only 2 of 11 deeper nodes among the "lower", non-obtectomeran apoditrysians. These represent a much harder phylogenetic problem, for which one path to resolution might include further increase in gene sampling, together with improved orthology assignments.


Subject(s)
Butterflies/classification , Butterflies/genetics , Moths/classification , Moths/genetics , RNA/genetics , Animals , Genes, Insect , Phylogeny
17.
PLoS One ; 8(3): e58568, 2013.
Article in English | MEDLINE | ID: mdl-23554903

ABSTRACT

BACKGROUND: Higher-level relationships within the Lepidoptera, and particularly within the species-rich subclade Ditrysia, are generally not well understood, although recent studies have yielded progress. We present the most comprehensive molecular analysis of lepidopteran phylogeny to date, focusing on relationships among superfamilies. METHODOLOGY PRINCIPAL FINDINGS: 483 taxa spanning 115 of 124 families were sampled for 19 protein-coding nuclear genes, from which maximum likelihood tree estimates and bootstrap percentages were obtained using GARLI. Assessment of heuristic search effectiveness showed that better trees and higher bootstrap percentages probably remain to be discovered even after 1000 or more search replicates, but further search proved impractical even with grid computing. Other analyses explored the effects of sampling nonsynonymous change only versus partitioned and unpartitioned total nucleotide change; deletion of rogue taxa; and compositional heterogeneity. Relationships among the non-ditrysian lineages previously inferred from morphology were largely confirmed, plus some new ones, with strong support. Robust support was also found for divergences among non-apoditrysian lineages of Ditrysia, but only rarely so within Apoditrysia. Paraphyly for Tineoidea is strongly supported by analysis of nonsynonymous-only signal; conflicting, strong support for tineoid monophyly when synonymous signal was added back is shown to result from compositional heterogeneity. CONCLUSIONS SIGNIFICANCE: Support for among-superfamily relationships outside the Apoditrysia is now generally strong. Comparable support is mostly lacking within Apoditrysia, but dramatically increased bootstrap percentages for some nodes after rogue taxon removal, and concordance with other evidence, strongly suggest that our picture of apoditrysian phylogeny is approximately correct. This study highlights the challenge of finding optimal topologies when analyzing hundreds of taxa. It also shows that some nodes get strong support only when analysis is restricted to nonsynonymous change, while total change is necessary for strong support of others. Thus, multiple types of analyses will be necessary to fully resolve lepidopteran phylogeny.


Subject(s)
Butterflies/genetics , Moths/genetics , Phylogeny , Animals , Butterflies/classification , Moths/classification
18.
PLoS One ; 8(1): e55066, 2013.
Article in English | MEDLINE | ID: mdl-23383061

ABSTRACT

BACKGROUND: Yponomeutoidea, one of the early-diverging lineages of ditrysian Lepidoptera, comprise about 1,800 species worldwide, including notable pests and insect-plant interaction models. Yponomeutoids were one of the earliest lepidopteran clades to evolve external feeding and to extensively colonize herbaceous angiosperms. Despite the group's economic importance, and its value for tracing early lepidopteran evolution, the biodiversity and phylogeny of Yponomeutoidea have been relatively little studied. METHODOLOGY/PRINCIPAL FINDINGS: Eight nuclear genes (8 kb) were initially sequenced for 86 putative yponomeutoid species, spanning all previously recognized suprageneric groups, and 53 outgroups representing 22 families and 12 superfamilies. Eleven to 19 additional genes, yielding a total of 14.8 to 18.9 kb, were then sampled for a subset of taxa, including 28 yponomeutoids and 43 outgroups. Maximum likelihood analyses were conducted on data sets differing in numbers of genes, matrix completeness, inclusion/weighting of synonymous substitutions, and inclusion/exclusion of "rogue" taxa. Monophyly for Yponomeutoidea was supported very strongly when the 18 "rogue" taxa were excluded, and moderately otherwise. Results from different analyses are highly congruent and relationships within Yponomeutoidea are well supported overall. There is strong support overall for monophyly of families previously recognized on morphological grounds, including Yponomeutidae, Ypsolophidae, Plutellidae, Glyphipterigidae, Argyresthiidae, Attevidae, Praydidae, Heliodinidae, and Bedelliidae. We also assign family rank to Scythropiinae (Scythropiidae stat. rev.), which in our trees are strongly grouped with Bedelliidae, in contrast to all previous proposals. We present a working hypothesis of among-family relationships, and an informal higher classification. Host plant family associations of yponomeutoid subfamilies and families are non-random, but show no trends suggesting parallel phylogenesis. Our analyses suggest that previous characterizations of yponomeutoids as predominantly Holarctic were based on insufficient sampling. CONCLUSIONS/SIGNIFICANCE: We provide the first robust molecular phylogeny for Yponomeutoidea, together with a revised classification and new insights into their life history evolution and biogeography.


Subject(s)
Lepidoptera/classification , Lepidoptera/physiology , Phylogeny , Plants , Animals , Evolution, Molecular , Genes, Insect/genetics , Lepidoptera/genetics , Phylogeography
19.
Proc Natl Acad Sci U S A ; 110(1): 240-5, 2013 Jan 02.
Article in English | MEDLINE | ID: mdl-23248304

ABSTRACT

The recent emergence of artemisinin-resistant Plasmodium falciparum malaria in western Cambodia could threaten prospects for malaria elimination. Identification of the genetic basis of resistance would provide tools for molecular surveillance, aiding efforts to contain resistance. Clinical trials of artesunate efficacy were conducted in Bangladesh, in northwestern Thailand near the Myanmar border, and at two sites in western Cambodia. Parasites collected from trial participants were genotyped at 8,079 single nucleotide polymorphisms (SNPs) using a P. falciparum-specific SNP array. Parasite genotypes were examined for signatures of recent positive selection and association with parasite clearance phenotypes to identify regions of the genome associated with artemisinin resistance. Four SNPs on chromosomes 10 (one), 13 (two), and 14 (one) were significantly associated with delayed parasite clearance. The two SNPs on chromosome 13 are in a region of the genome that appears to be under strong recent positive selection in Cambodia. The SNPs on chromosomes 10 and 13 lie in or near genes involved in postreplication repair, a DNA damage-tolerance pathway. Replication and validation studies are needed to refine the location of loci responsible for artemisinin resistance and to understand the mechanism behind it; however, two SNPs on chromosomes 10 and 13 may be useful markers of delayed parasite clearance in surveillance for artemisinin resistance in Southeast Asia.


Subject(s)
Artemisinins/pharmacology , Drug Resistance/genetics , Genetic Loci/genetics , Plasmodium falciparum/genetics , Selection, Genetic , Asia, Southeastern , Genetic Markers/genetics , Genotype , Likelihood Functions , Odds Ratio , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide/genetics , Principal Component Analysis , Regression Analysis
20.
BMC Bioinformatics ; 13: 92, 2012 May 10.
Article in English | MEDLINE | ID: mdl-22574964

ABSTRACT

BACKGROUND: A fundamental problem in modern genomics is to taxonomically or functionally classify DNA sequence fragments derived from environmental sampling (i.e., metagenomics). Several different methods have been proposed for doing this effectively and efficiently, and many have been implemented in software. In addition to varying their basic algorithmic approach to classification, some methods screen sequence reads for 'barcoding genes' like 16S rRNA, or various types of protein-coding genes. Due to the sheer number and complexity of methods, it can be difficult for a researcher to choose one that is well-suited for a particular analysis. RESULTS: We divided the very large number of programs that have been released in recent years for solving the sequence classification problem into three main categories based on the general algorithm they use to compare a query sequence against a database of sequences. We also evaluated the performance of the leading programs in each category on data sets whose taxonomic and functional composition is known. CONCLUSIONS: We found significant variability in classification accuracy, precision, and resource consumption of sequence classification programs when used to analyze various metagenomics data sets. However, we observe some general trends and patterns that will be useful to researchers who use sequence classification programs.


Subject(s)
Algorithms , Computational Biology/methods , Genomics/methods , Software , Metagenomics , Phylogeny , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...