Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 6: 456, 2019.
Article in English | MEDLINE | ID: mdl-31921914

ABSTRACT

Since the emergence of bluetongue virus in central and northern Europe in 2006, Northern Ireland's (NI) surveillance programme has evolved to include the use of risk assessments and simulation models to monitor the risk of bluetongue incursion. Livestock production is of high economic importance to NI as it exports approximately 75% of its agricultural produce. Its surveillance programme is designed to enable effective mitigation measures to be identified to minimize disease risk, and to provide additional assurances to protect NI's export markets in the European Union (EU) and third countries. Active surveillance employs an atmospheric dispersion model to assess the likelihood of wind-borne midge transfer from Great Britain (GB) to NI and to identify high risk areas. In these areas, the number of cattle tested for bluetongue is proportionally increased. Targeted surveillance is directed to ruminants imported from restricted countries and regions at risk of bluetongue. Targeted surveillance on high risk imports assists in early detection of disease as, despite all controls and preventive measures, legally imported animals may still carry the virus. In November 2018, a bluetongue-positive heifer was imported into NI. A case specific risk assessment was commissioned to estimate the likelihood of spread of bluetongue as a result of this incursion. November is the tail end of the midges' active period and therefore there was considerable uncertainty pertaining to the survival of midges inside a cattle shed and the potential for incubation of the virus in the vectors. An evidenced-based approach was adopted where temperature and midge abundance was monitored in order to minimize uncertainty and give an accurate estimate of the likelihood of virus spread to other animals following the arrival of the positive heifer. The heifer was destroyed and the evidence indicated that the risk of successful completion of the extrinsic cycle within the local midge population was negligible. This paper describes NI's surveillance programme between January 2017 and December 2018 and the case of a positive imported animal into the country. The importance of effective surveillance in early detection of threats and the usefulness of risk assessments is highlighted through the case study.

3.
Spine (Phila Pa 1976) ; 29(16): 1731-6, 2004 Aug 15.
Article in English | MEDLINE | ID: mdl-15303015

ABSTRACT

STUDY DESIGN: A biomechanical study of lumbar threaded interbody cage construct under varying compressive preloads of similar magnitudes to those experienced in vivo during daily activities. OBJECTIVES: To test the hypothesis that supplemental translaminar facet screws would enhance the stability (ability to reduce segmental angular motion) of threaded interbody cages in flexion-extension during activities in which the spine is subjected to low compressive preloads, and therefore the stand-alone interbody cage construct is least stable. SUMMARY OF BACKGROUND DATA: Controversy exists over whether threaded anteriorly placed interbody cages can be routinely used as "stand-alone" devices or whether they require supplemental posterior stabilization to achieve successful fusion. Biomechanical studies suggest that under conditions of low preloads, the motion segment treated with stand-alone cages might be less stable, particularly in extension. METHODS.: Eight human lumbar spine specimens (from L1 to sacrum) were tested intact, after insertion of 2 threaded cylindrical cages (BAK) at L5-S1 and after supplemental translaminar facet screw fixation. They were subjected to flexion and extension moments under progressively increasing magnitude of externally applied compressive follower preload from 0 to 1200 N. The range of angular motion in flexion-extension at L5-S1 was analyzed to assess the effect of translaminar facet screws on the stability of the cage construct for different compressive preloads. RESULTS: In flexion, over 0 to 400 N preload, the supplemental translaminar facet screw fixation reduced the L5-S1 angular motion relative to intact by 71% to 74% as compared to 40% to 44% for the cages alone. This difference was statistically significant (P < 0.05). In extension at 0 N preload, the cages allowed more angular motion than the intact segment, whereas with translaminar facet screw fixation, the motion was reduced to the level of the intact segment. At 400 N preload, supplemental TLFS fixation significantly increased the stability of the cages, reducing the extension angular motion by 60% of intact (P = 0.04). Supplemental translaminar facet screw fixation did not significantly increase the stability provided by the cages in flexion or extension at the 1200 N preload magnitude. CONCLUSIONS: In vivo during activities of daily living, interbody cage constructs are subject to varying compressive preloads due to external loads generated by paraspinal musculature, and our results suggest that the stability created by the cage (reduction in segmental angular motion) is not constant. The cage construct is likely to be least stable in extension during activities that impart low compressive preloads to the lumbar spine. Supplemental translaminar facet screw fixation will enhance stability of the motion segment treated with threaded cages, particularly during conditions of low compressive preloads, the very condition in which the cage alone is least effective in providing stability.


Subject(s)
Bone Screws , Internal Fixators , Lumbar Vertebrae/surgery , Spinal Fusion , Adult , Biomechanical Phenomena , Cadaver , Humans , Male , Middle Aged , Range of Motion, Articular , Weight-Bearing
4.
J Bone Joint Surg Am ; 85(9): 1749-56, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12954834

ABSTRACT

BACKGROUND: Insertion of an anterior lumbar interbody fusion cage has been shown to reduce motion in a human spine segment in all loading directions except extension. The "stand-alone" cages depend on compressive preload produced by anular pretensioning and muscle forces for initial stabilization. However, the effect that the in vivo compressive preload generated during activities of daily living has on the construct is not fully understood. This study tested the hypothesis that the ability of the cages to reduce the segmental motions in flexion and extension is significantly affected by the magnitude of the externally applied compressive preload. METHODS: Fourteen specimens from human lumbar spines were tested intact and after insertion of two threaded cylindrical cages at level L5-Sl. They were subjected to flexion and extension moments under progressively increasing magnitudes of externally applied compressive follower preload from 0 to 1200 N. The range of motion at level L5-S1 after cage insertion was compared with the value achieved in the intact specimens at each compressive preload magnitude. RESULTS: The cages significantly reduced the L5-S1 flexion motion at all preloads (p < 0.05). They decreased flexion motion by 29% to 43% of that of the intact specimens for low preloads (0 to 400 N) and by 69% to 79% of that of the intact specimens under preloads of 800 to 1200 N. In extension, in the absence of an externally applied preload, the cages permitted 24% more motion than the intact segment (p < 0.05). In contrast, they reduced the extension motion at preloads from 200 to 1200 N. Under preloads of 800 to 1200 N, the reduction in extension motion after cage placement was 42% to 48% of that of the intact segment (p < 0.05). The reduction of motion in both flexion and extension after cage placement was significantly greater at preloads of 800 to 1200 N compared with the motion reductions at preloads of < or =400 N (p < 0.05). CONCLUSIONS: In contrast to the observed extension instability under anular tension preload only, the two-cage construct exerted a stabilizing effect on the motion segment (a reduction in segmental motion) in flexion as well as extension under externally applied compressive preloads of physiologic magnitudes. The external compressive preload significantly affected the stabilization provided by the cages. The cages provided substantially more stabilization, both in flexion and in extension, at larger preloads than at smaller preloads. CLINICAL RELEVANCE: The study suggests that the segment treated with an anterior lumbar interbody fusion cage is relatively less stable under conditions of low external compressive preload. The magnitude of preload required to achieve stabilization with stand-alone cages may be only partially achieved by anular pretensioning. Since the magnitude of the preload across the disc space due to muscle activity can vary with activities of daily living, supplemental stabilization of the cage construct may provide a more predictably stable environment for lumbar spine fusion.


Subject(s)
Compressive Strength/physiology , Internal Fixators , Lumbar Vertebrae/physiology , Movement/physiology , Spinal Fusion/methods , Aged , Analysis of Variance , Biomechanical Phenomena , Cadaver , Female , Humans , Lumbar Vertebrae/surgery , Male , Middle Aged , Range of Motion, Articular
SELECTION OF CITATIONS
SEARCH DETAIL
...