Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Labelled Comp Radiopharm ; 66(1): 11-21, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36453978

ABSTRACT

This paper describes the deuterium-labelling of alkylnitroaromatics by base-catalysed exchange with deuterium oxide. As the alkyl protons alpha to the aromatic ring are the most acidic sites in the molecule, regioselective hydrogen isotope exchange at this benzylic location leads to a regiospecifically deuterated product. The exchange labelling takes place in good yields and with high atom% abundance in the presence of an appropriate nitrogen base. Alkylated 2,4-dinitrobenzenes deuterate at room temperature under catalysis by triethylamine, whilst alkylated 2-nitro- or 4-nitrobenzenes and related mono-nitroaromatics require higher temperatures and catalysis by 1,5-diazobicyclo[4.3.0]non-5-ene (DBN). The labelling reactions require an inert gas atmosphere, but otherwise are simple and high yielding with no obvious byproducts. Those compounds in which the benzylic protons are in an ortho-orientation with respect to the nitro group label somewhat more slowly than the analogues where there is a para relationship. In addition, higher alkyl homologues undergo benzylic deuteration at slower rates than methyl.


Subject(s)
Amines , Protons , Deuterium Oxide , Hydrogen , Catalysis
2.
Dalton Trans ; 41(30): 9158-60, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22735106

ABSTRACT

A stopped-flow study has shown that tetrakis(pentafluoro-phenyl)porphyrin iron(III) chloride reacts rapidly (<3 ms) with hydrogen peroxide to form a Fe(III)-H(2)O(2) complex where log K = 2.39. This subsequently undergoes rapid intramolecular conversion (k = 4.4 s(-1)) to an iron(IV) intermediate, which in turn reacts with hydrogen peroxide (k' = 54.3 M(-1) s(-1)) to reform the original Fe(III)-H(2)O(2) complex.


Subject(s)
Ferric Compounds/chemistry , Hydrogen Peroxide/chemistry , Metalloporphyrins/chemistry , Chlorides/chemistry
3.
J Org Chem ; 70(23): 9248-56, 2005 Nov 11.
Article in English | MEDLINE | ID: mdl-16268597

ABSTRACT

[Structure: see text]. The pKa values for calixarenes in MeCN have been determined by selective titration with bases using a spectroscopic method. These values are as follows: calix[4]arene pKa(1) = 19.06 +/- 0.22, pKa(2) > 33; calix[6]arene pKa(1) = 15.59 +/- 0.06, pKa(2) = 23.85 +/- 0.35, pKa(3) > 33; calix[8]arene pKa(1) = 17.20 +/- 0.20, pKa(2) = 20.32 +/- 0.31, pKa(3) > 33. The trends in acidity are rationalized using structures generated by a DFT model. For mono-deprotonation, the degree and nature of hydrogen bonding in the anion is the dominant factor; for di-deprotonation, spatial separation of the anionic charges becomes important.

SELECTION OF CITATIONS
SEARCH DETAIL