Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 326(5): R333-R345, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38406843

ABSTRACT

Obstructive sleep apnea, a common form of sleep-disordered breathing, is characterized by intermittent cessations of breathing that reduce blood oxygen levels and contribute to the development of hypertension. Hypertension is a major complication of obstructive sleep apnea that elevates the risk of end-organ damage. Premenopausal women have a lower prevalence of obstructive sleep apnea and cardiovascular disease than men and postmenopausal women, suggesting that sex hormones play a role in the pathophysiology of sleep apnea-related hypertension. The lack of protection in men and postmenopausal women implicates estrogen and progesterone as protective agents but testosterone as a permissive agent in sleep apnea-induced hypertension. A better understanding of how sex hormones contribute to the pathophysiology of sleep apnea-induced hypertension is important for future research and possible hormone-based interventions. The effect of sex on the pathophysiology of sleep apnea and associated intermittent hypoxia-induced hypertension is of important consideration in the screening, diagnosis, and treatment of the disease and its cardiovascular complications. This review summarizes our current understanding of the impact of sex hormones on blood pressure regulation in sleep apnea with a focus on sex differences.


Subject(s)
Hypertension , Sleep Apnea Syndromes , Sleep Apnea, Obstructive , Humans , Female , Male , Sleep Apnea Syndromes/complications , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/epidemiology , Progesterone , Hypoxia/complications
2.
Biol Sex Differ ; 14(1): 71, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37858270

ABSTRACT

BACKGROUND: The supraoptic nucleus (SON) of the hypothalamus contains magnocellular neurosecretory cells that secrete the hormones vasopressin and oxytocin. Sex differences in SON gene expression have been relatively unexplored. Our study used spatially resolved transcriptomics to visualize gene expression profiles in the SON of adult male (n = 4) and female (n = 4) Sprague-Dawley rats using Visium Spatial Gene Expression (10x Genomics). METHODS: Briefly, 10-µm coronal sections (~ 4 × 4 mm) containing the SON were collected from each rat and processed using Visium slides and recommended protocols. Data were analyzed using 10x Genomics' Space Ranger and Loupe Browser applications and other bioinformatic tools. Two unique differential expression (DE) analysis methods, Loupe Browser and DESeq2, were used. RESULTS: Loupe Browser DE analysis of the SON identified 116 significant differentially expressed genes (DEGs) common to both sexes (e.g., Avp and Oxt), 31 significant DEGs unique to the males, and 73 significant DEGs unique to the females. DESeq2 analysis revealed 183 significant DEGs between the two groups. Gene Ontology (GO) enrichment and pathway analyses using significant genes identified via Loupe Browser revealed GO terms and pathways related to (1) neurohypophyseal hormone activity, regulation of peptide hormone secretion, and regulation of ion transport for the significant genes common to both males and females, (2) Gi signaling/G-protein mediated events for the significant genes unique to males, and (3) potassium ion transport/voltage-gated potassium channels for the significant genes unique to females, as some examples. GO/pathway analyses using significant genes identified via DESeq2 comparing female vs. male groups revealed GO terms/pathways related to ribosomal structure/function. Ingenuity Pathway Analysis (IPA) identified additional sex differences in canonical pathways (e.g., 'Mitochondrial Dysfunction', 'Oxidative Phosphorylation') and upstream regulators (e.g., CSF3, NFKB complex, TNF, GRIN3A). CONCLUSION: There was little overlap in the IPA results for the two different DE methods. These results suggest sex differences in SON gene expression that are associated with cell signaling and ribosomal pathways.


The brain releases the hormones oxytocin and vasopressin from the supraoptic nucleus. Oxytocin is involved in maternal behaviors, lactation, and childbirth. Vasopressin is involved in sex-based differences in social behavior and body fluid regulation. However, how the brain contributes to sex-based differences in vasopressin and oxytocin release is poorly understood. This study aimed to address this knowledge gap using spatial transcriptomics to test for sex-based differences in gene expression in the supraoptic nucleus. Spatial transcriptomics combines anatomy with gene sequencing technology, allowing us to identify groups of genes that are expressed in specific locations in the brain. We applied this approach to brain sections containing the supraoptic nucleus from four adult male and four adult female rats. Using a data analysis workflow specifically for spatial transcriptomics, we identified genes that are significantly expressed in the supraoptic nuclei of both males and females (116 genes), primarily males (31 genes), and primarily females (73 genes). Genes enriched in the supraoptic nucleus of both males and females are related to the synthesis and release of peptides like vasopressin and oxytocin. Genes specific to the male supraoptic nucleus are broadly related to cell signaling, while the female-specific genes are related to ion transporters/channels. Results from a more traditional data analysis workflow identified sex-based differences in the expression of genes related to cell metabolism and protein synthesis. Together these results may provide a mechanistic foundation that can be used to better understand how differences in gene expression related to biological sex influence brain function.


Subject(s)
Sex Characteristics , Supraoptic Nucleus , Rats , Female , Male , Animals , Supraoptic Nucleus/chemistry , Supraoptic Nucleus/metabolism , Rats, Sprague-Dawley , Transcriptome , Oxytocin/analysis , Oxytocin/genetics , Oxytocin/metabolism , Signal Transduction
3.
J Neuroendocrinol ; 35(6): e13312, 2023 06.
Article in English | MEDLINE | ID: mdl-37337093

ABSTRACT

Dilutional hyponatremia due to increased plasma arginine vasopressin (AVP) is associated with liver cirrhosis. However, plasma AVP remains elevated despite progressive hypoosmolality. This study investigated changes to inhibitory control of supraoptic nucleus (SON) AVP neurons during liver cirrhosis. Experiments were conducted with adult male Sprague-Dawley rats. Bile duct ligation was used as a model of chronic liver cirrhosis. An adeno-associated virus containing a construct with an AVP promoter and either green fluorescent protein (GFP) or a ratiometric chloride indicator, ClopHensorN, was bilaterally injected into the SON of rats. After 2 weeks, rats received either BDL or sham surgery, and liver cirrhosis was allowed to develop for 4 weeks. In vitro, loose patch recordings of action potentials were obtained from GFP-labeled and unlabeled SON neurons in response to a brief focal application of the GABAA agonist muscimol (100 µM). Changes to intracellular chloride ([Cl]i) following muscimol application were determined by changes to the fluorescence ratio of ClopHensorN. The contribution of cation chloride cotransporters NKCC1 and KCC2 to changes in intracellular chloride was investigated using their respective antagonists, bumetanide (BU, 10 µM) and VU0240551 (10 µM). Plasma osmolality and hematocrit were measured as a marker of dilutional hyponatremia. The results showed reduced or absent GABAA -mediated inhibition in a greater proportion of AVP neurons from BDL rats as compared to sham rats (100% inhibition in sham vs. 47% in BDL, p = .001). Muscimol application was associated with increased [Cl]i in most cells from BDL as compared to cells from sham rats (χ2 = 30.24, p < .001). NKCC1 contributed to the impaired inhibition observed in BDL rats (p < .001 BDL - BU vs. BDL + BU). The results show that impaired inhibition of SON AVP neurons and increased intracellular chloride contribute to the sustained dilutional hyponatremia in liver cirrhosis.


Subject(s)
Hyponatremia , Rats , Male , Animals , Rats, Sprague-Dawley , Hyponatremia/metabolism , Hyponatremia/pathology , Chlorides/metabolism , Chlorides/pharmacology , Muscimol/metabolism , Muscimol/pharmacology , Vasopressins/metabolism , Arginine Vasopressin/metabolism , Neurons/metabolism , Supraoptic Nucleus/metabolism , Bile Ducts/surgery , Bile Ducts/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Green Fluorescent Proteins/metabolism , gamma-Aminobutyric Acid/metabolism
4.
J Neurophysiol ; 128(6): 1383-1394, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36321700

ABSTRACT

Chronic intermittent hypoxia (CIH), an animal model of sleep apnea, has been shown to alter the activity of second-order chemoreceptor neurons in the caudal nucleus of the solitary tract (cNTS). Although numerous studies have focused on excitatory plasticity, few studies have explored CIH-induced plasticity impacting inhibitory inputs to NTS neurons, and the roles of GABAergic and glycinergic inputs on heightened cNTS excitability following CIH are unknown. In addition, changes in astrocyte function may play a role in cNTS plasticity responses to CIH. This study tested the effects of a 7-day CIH protocol on miniature inhibitory postsynaptic currents (mIPSCs) in cNTS neurons receiving chemoreceptor afferents. Normoxia-treated rats primarily displayed GABA mIPSCs, whereas CIH-treated rats exhibited a shift toward combined GABA/glycine-mediated mIPSCs. CIH increased glycinergic mIPSC amplitude and area. This shift was not observed in dorsal motor nucleus of the vagus neurons or cNTS cells from females. Immunohistochemistry showed that strengthened glycinergic mIPSCs were associated with increased glycine receptor protein and were dependent on receptor trafficking in CIH-treated rats. In addition, CIH altered astrocyte morphology in the cNTS, and inactivation of astrocytes following CIH reduced glycine receptor-mediated mIPSC frequency and overall mIPSC amplitude. In cNTS, CIH produced changes in glycine signaling that appear to reflect increased trafficking of glycine receptors to the cell membrane. Increased glycine signaling in cNTS associated with CIH also appears to be dependent on astrocytes. Additional studies will be needed to determine how CIH influences glycine receptor expression and astrocyte function in cNTS.NEW & NOTEWORTHY Chronic intermittent hypoxia (CIH) has been used to mimic the hypoxemia associated with sleep apnea and determine how these hypoxemias influence neural function. The nucleus of the solitary tract is the main site for chemoreceptor input to the CNS, but how CIH influences NTS inhibition has not been determined. These studies show that CIH increases glycine-mediated miniature IPSCs through mechanisms that depend on protein trafficking and astrocyte activation.


Subject(s)
Sleep Apnea Syndromes , Solitary Nucleus , Rats , Animals , Solitary Nucleus/metabolism , Receptors, Glycine/metabolism , Rats, Sprague-Dawley , Hypoxia , Glycine/metabolism , gamma-Aminobutyric Acid/metabolism , Sleep Apnea Syndromes/metabolism , Neural Inhibition/physiology
5.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R797-R809, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36189988

ABSTRACT

Dilutional hyponatremia associated with liver cirrhosis is due to inappropriate release of arginine vasopressin (AVP). Elevated plasma AVP causes water retention resulting in a decrease in plasma osmolality. Cirrhosis, in this study caused by ligation of the common bile duct (BDL), leads to a decrease in central vascular blood volume and hypotension, stimuli for nonosmotic AVP release. The A1/A2 neurons stimulate the release of AVP from the supraoptic nucleus (SON) in response to nonosmotic stimuli. We hypothesize that the A1/A2 noradrenergic neurons support chronic release of AVP in cirrhosis leading to dilutional hyponatremia. Adult, male rats were anesthetized with 2-3% isoflurane (mixed with 95% O2/5% CO2) and injected in the SON with anti-dopamine ß-hydroxylase (DBH) saporin (DSAP) or vehicle followed by either BDL or sham surgery. Plasma copeptin, osmolality, and hematocrit were measured. Brains were processed for ΔFosB, dopamine ß-hydroxylase (DBH), and AVP immunohistochemistry. DSAP injection: 1) significantly reduced the number of DBH immunoreactive A1/A2 neurons (A1, P < 0.0001; A2, P = 0.0014), 2) significantly reduced the number of A1/A2 neurons immunoreactive to both DBH and ΔFosB positive neurons (A1, P = 0.0015; A2, P < 0.0001), 3) reduced the number of SON neurons immunoreactive to both AVP and ΔFosB (P < 0.0001), 4) prevented the increase in plasma copeptin observed in vehicle-injected BDL rats (P = 0.0011), and 5) normalized plasma osmolality and hematocrit (plasma osmolality, P = 0.0475; hematocrit, P = 0.0051) as compared with vehicle injection. Our data suggest that A1/A2 neurons contribute to increased plasma copeptin and hypoosmolality in male BDL rats.


Subject(s)
Hyponatremia , Supraoptic Nucleus , Animals , Rats , Male , Supraoptic Nucleus/metabolism , Norepinephrine , Arginine Vasopressin , Dopamine beta-Hydroxylase/metabolism , Liver Cirrhosis
6.
J Parkinsons Dis ; 12(6): 1897-1915, 2022.
Article in English | MEDLINE | ID: mdl-35754287

ABSTRACT

BACKGROUND: Rodent Parkinson's disease (PD) models are valuable to interrogate neurobiological mechanisms of exercise that mitigate motor impairment. Translating these mechanisms to human PD must account for physical capabilities of the patient. OBJECTIVE: To establish cardiovascular parameters as a common metric for cross-species translation of aerobic exercise impact. METHOD: We evaluated aerobic exercise impact on heart rate (HR) in 21 early-stage PD subjects (Hoehn Yahr ≤1.5) exercising in non-contact boxing training for ≥3 months, ≥3x/week. In 4-month-old Pink1 knockout (KO) rats exercising in a progressively-increased treadmill speed regimen, we determined a specific treadmill speed that increased HR to an extent similar in human subjects. RESULTS: After completing aerobic exercise for ∼30 min, PD subjects had increased HR∼35% above baseline (∼63% maximum HR). Motor and cognitive test results indicated the exercising subjects completed the timed up and go (TUG) and trail-making test (TMT-A) in significantly less time versus exercise-naïve PD subjects. In KO and age-matched wild-type (WT) rats, treadmill speeds of 8-10 m/min increased HR up to 25% above baseline (∼67% maximum HR), with no further increases up to 16 m/min. Exercised KO, but not WT, rats showed increased locomotor activity compared to an age-matched exercise-naïve cohort at 5 months old. CONCLUSION: These proof-of-concept results indicate HR is a cross-species translation parameter to evaluate aerobic exercise impact on specific motor or cognitive functions in human subjects and rat PD models. Moreover, a moderate intensity exercise regimen is within the physical abilities of early-stage PD patients and is therefore applicable for interrogating neurobiological mechanisms in rat PD models.


Subject(s)
Parkinson Disease , Animals , Exercise Test , Exercise Therapy/methods , Heart Rate , Humans , Infant , Parkinson Disease/genetics , Rats
7.
Endocrinology ; 162(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34467976

ABSTRACT

Neurodegenerative diseases cause severe impairments in cognitive and motor function. With an increasing aging population and the onset of these diseases between 50 and 70 years, the consequences are bound to be devastating. While age and longevity are the main risk factors for neurodegenerative diseases, sex is also an important risk factor. The characteristic of sex is multifaceted, encompassing sex chromosome complement, sex hormones (estrogens and androgens), and sex hormone receptors. Sex hormone receptors can induce various signaling cascades, ranging from genomic transcription to intracellular signaling pathways that are dependent on the health of the cell. Oxidative stress, associated with aging, can impact the health of the cell. Sex hormones can be neuroprotective under low oxidative stress conditions but not in high oxidative stress conditions. An understudied sex hormone receptor that can induce activation of oxidative stress signaling is the membrane androgen receptor (mAR). mAR can mediate nicotinamide adenine dinucleotide-phosphate (NADPH) oxidase (NOX)-generated oxidative stress that is associated with several neurodegenerative diseases, such as Alzheimer disease. Further complicating this is that aging can alter sex hormone signaling. Prior to menopause, women experience more estrogens than androgens. During menopause, this sex hormone profile switches in women due to the dramatic ovarian loss of 17ß-estradiol with maintained ovarian androgen (testosterone, androstenedione) production. Indeed, aging men have higher estrogens than aging women due to aromatization of androgens to estrogens. Therefore, higher activation of mAR-NOX signaling could occur in menopausal women compared with aged men, mediating the observed sex differences. Understanding of these signaling cascades could provide therapeutic targets for neurodegenerative diseases.


Subject(s)
Gonadal Steroid Hormones/physiology , Neurodegenerative Diseases/etiology , Oxidative Stress/physiology , Sex Characteristics , Aging/physiology , Androgens/metabolism , Androgens/physiology , Animals , Estrogens/metabolism , Estrogens/physiology , Female , Humans , Male , Neurodegenerative Diseases/epidemiology , Neurodegenerative Diseases/therapy
8.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R469-R481, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34189959

ABSTRACT

Chronic intermittent hypoxia (CIH) is associated with diurnal hypertension, increased sympathetic nerve activity (SNA), and increases in circulating angiotensin II (ANG II). In rats, CIH increases angiotensin type 1 (AT1a) receptor expression in the median preoptic nucleus (MnPO), and pharmacological blockade or viral knockdown of this receptor prevents CIH-dependent increases in diurnal blood pressure. The current study investigates the role of AT1a receptor in modulating the activity of MnPO neurons following 7 days of CIH. Male Sprague-Dawley rats received MnPO injections of an adeno-associated virus with an shRNA against the AT1a receptor or a scrambled control. Rats were then exposed to CIH for 8 h a day for 7 days. In vitro, loose patch recordings of spontaneous action potential activity were made from labeled MnPO neurons in response to brief focal application of ANG II or the GABAA receptor agonist muscimol. In addition, MnPO K-Cl cotransporter isoform 2 (KCC2) protein expression was assessed using Western blot. CIH impaired the duration but not the magnitude of ANG II-mediated excitation in the MnPO. Both CIH and AT1a knockdown also impaired GABAA-mediated inhibition, and CIH with AT1a knockdown produced GABAA-mediated excitation. Recordings using the ratiometric Cl- indicator ClopHensorN showed CIH was associated with Cl- efflux in MnPO neurons that was associated with decreased KCC2 phosphorylation. The combination of CIH and AT1a knockdown attenuated reduced KCC2 phosphorylation seen with CIH alone. The current study shows that CIH, through the activity of AT1a receptors, can impair GABAA-mediated inhibition in the MnPO and contribute to sustained hypertension.


Subject(s)
Blood Pressure , GABAergic Neurons/metabolism , Hypertension/metabolism , Hypoxia/metabolism , Neural Inhibition , Preoptic Area/metabolism , Receptor, Angiotensin, Type 1/metabolism , Receptors, GABA-A/metabolism , Sleep Apnea Syndromes/metabolism , Animals , Chronic Disease , Disease Models, Animal , Hypertension/genetics , Hypertension/physiopathology , Hypoxia/genetics , Hypoxia/physiopathology , Male , Phosphorylation , Preoptic Area/physiopathology , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/genetics , Sleep Apnea Syndromes/genetics , Sleep Apnea Syndromes/physiopathology , Symporters/metabolism , Time Factors
9.
Endocrinology ; 162(8)2021 08 01.
Article in English | MEDLINE | ID: mdl-33891015

ABSTRACT

Arginine vasopressin (AVP) and oxytocin (OXY) are released by magnocellular neurosecretory cells that project to the posterior pituitary. While AVP and OXY currently receive more attention for their contributions to affiliative behavior, this mini-review discusses their roles in cardiovascular function broadly defined to include indirect effects that influence cardiovascular function. The traditional view is that neither AVP nor OXY contributes to basal cardiovascular function, although some recent studies suggest that this position might be re-evaluated. More evidence indicates that adaptations and neuroplasticity of AVP and OXY neurons contribute to cardiovascular pathophysiology.


Subject(s)
Arginine Vasopressin/physiology , Blood Pressure , Cardiovascular System/metabolism , Hypothalamo-Hypophyseal System/metabolism , Oxytocin/physiology , Animals , Blood Volume , Cardiovascular Diseases/etiology , Humans , Natriuresis , Receptors, Oxytocin/metabolism , Receptors, Vasopressin/metabolism , Sex Characteristics
10.
Am J Physiol Regul Integr Comp Physiol ; 320(4): R519-R525, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33595364

ABSTRACT

Sleep apnea is characterized by momentary interruptions in normal respiration and leads to periods of decreased oxygen, or intermittent hypoxia. Chronic intermittent hypoxia is a model of the hypoxemia associated with sleep apnea and results in a sustained hypertension that is maintained during normoxia. Adaptations of the carotid body and activation of the renin-angiotensin system may contribute to the development of hypertension associated with chronic intermittent hypoxia. The subsequent activation of the brain renin-angiotensin system may produce changes in sympathetic regulatory neural networks that support the maintenance of the hypertension associated with intermittent hypoxia. Hypertension and sleep apnea not only increase risk for cardiovascular disease but are also risk factors for cognitive decline and Alzheimer's disease. Activation of the angiotensin system could be a common mechanism that links these disorders.


Subject(s)
Angiotensin II/metabolism , Blood Pressure , Cognition , Cognitive Dysfunction/etiology , Hypertension/etiology , Hypoxia/etiology , Renin-Angiotensin System , Sleep Apnea Syndromes/complications , Animals , Chronic Disease , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/psychology , Humans , Hypertension/metabolism , Hypertension/physiopathology , Hypoxia/metabolism , Hypoxia/physiopathology , Risk Factors , Signal Transduction , Sleep Apnea Syndromes/metabolism , Sleep Apnea Syndromes/physiopathology
11.
Front Aging Neurosci ; 13: 775355, 2021.
Article in English | MEDLINE | ID: mdl-34975456

ABSTRACT

Preservation of motor capabilities is vital to maintaining independent daily living throughout a person's lifespan and may mitigate aging-related parkinsonism, a progressive and prevalent motor impairment. Physically active lifestyles can mitigate aging-related motor impairment. However, the metrics of physical activity necessary for mitigating parkinsonian signs are not established. Consistent moderate intensity (~10 m/min) treadmill exercise can reverse aging-related parkinsonian signs by 20 weeks in a 2-week on, 2-week off, regimen in previously sedentary advanced middle-aged rats. In this study, we initiated treadmill exercise in sedentary 18-month-old male rats to address two questions: (1) if a rest period not longer than 1-week off exercise, with 15 exercise sessions per month, could attenuate parkinsonian signs within 2 months after exercise initiation, and the associated impact on heart rate (HR) and mean arterial pressure (MAP) and (2) if continuation of this regimen, up to 20 weeks, will be associated with continual prevention of parkinsonian signs. The intensity and frequency of treadmill exercise attenuated aging-related parkinsonian signs by 8 weeks and were maintained till 23 months old. The exercise regimen increased HR by 25% above baseline and gradually reduced pre-intervention MAP. Together, these studies indicate that a practicable frequency and intensity of exercise reduces parkinsonian sign severity commensurate with a modest increase in HR after exercise. These cardiovascular changes provide a baseline of metrics, easily measured in humans, for predictive validity that practicable exercise intensity and schedule can be initiated in previously sedentary older adults to delay the onset of aging-related parkinsonian signs.

12.
Geroscience ; 43(1): 159-166, 2021 02.
Article in English | MEDLINE | ID: mdl-32902819

ABSTRACT

Vascular cognitive impairment (VCI) is a term that encompasses a continuum of cognitive disorders with cerebrovascular pathology contribution, ranging from mild cognitive impairment to vascular dementia (VaD). VCI and VaD, thus, represent an interesting intersection between cardiovascular disease and neurodegenerative disorders such as Alzheimer's disease (AD) and a rising area of research in recent years. Although VCI and VaD research has identified various causes and explanations for disease development, many aspects remain unclear, particularly sex differences in VCI (e.g., epidemiology), unlike those available for cardiovascular disease and AD. Despite limited information in the literature, several studies have observed an association of estrogen receptor (ER) polymorphisms and VaD. If further explored, this association could provide valuable insights for novel therapeutic approaches. This review aims to provide a brief epidemiological overview and subsequent discussion exploring concepts of brain aging and involvement of estrogen receptors in potential mechanisms of VCI/VaD pathogenesis and treatment development.


Subject(s)
Cognition Disorders , Cognitive Dysfunction , Dementia, Vascular , Receptors, Estrogen , Alzheimer Disease , Cognitive Dysfunction/etiology , Dementia, Vascular/etiology , Female , Humans , Male , Sex Factors
13.
Neuroendocrinology ; 111(3): 237-248, 2021.
Article in English | MEDLINE | ID: mdl-32335554

ABSTRACT

INTRODUCTION: Hyponatremia due to elevated arginine vasopressin (AVP) secretion increases mortality in liver failure patients. No previous studies have addressed sex differences in hyponatremia in liver failure animal models. OBJECTIVE: This study addressed this gap in our understanding of the potential sex differences in hyponatremia associated with increased AVP secretion. METHODS: This study tested the role of sex in the development of hyponatremia using adult male, female, and ovariectomized (OVX) female bile duct-ligated (BDL) rats. RESULTS: All BDL rats had significantly increased liver to body weight ratios compared to sham controls. Male BDL rats had hyponatremia with significant increases in plasma copeptin and FosB expression in supraoptic AVP neurons compared to male shams (all p < 0.05; 5-7). Female BDL rats did not become hyponatremic or demonstrate increased supraoptic AVP neuron activation and copeptin secretion compared to female shams. Plasma oxytocin was significantly higher in female BDL rats compared to female sham (p < 0.05; 6-10). This increase was not observed in male BDL rats. Ovariectomy significantly decreased plasma estradiol in sham rats compared to intact female sham (p < 0.05; 6-10). However, circulating estradiol was significantly elevated in OVX BDL rats compared to the OVX and female shams (p < 0.05; 6-10). Adrenal estradiol, testosterone, and dehydroepiandrosterone (DHEA) were measured to identify a possible source of circulating estradiol in OVX BDL rats. The OVX BDL rats had significantly increased adrenal estradiol along with significantly decreased adrenal testosterone and DHEA compared to OVX shams (all p < 0.05; 6-7). Plasma osmolality, hematocrit, copeptin, and AVP neuron activation were not significantly different between OVX BDL and OVX shams. Plasma oxytocin was significantly higher in OVX BDL rats compared to OVX sham. CONCLUSIONS: Our results show that unlike male BDL rats, female and OVX BDL rats did not develop hyponatremia, supraoptic AVP neuron activation, or increased copeptin secretion compared to female shams. Adrenal estradiol might have compensated for the lack of ovarian estrogens in OVX BDL rats.


Subject(s)
Arginine Vasopressin/metabolism , Bile Ducts , Estradiol/metabolism , Glycopeptides/metabolism , Hyponatremia/metabolism , Oxytocin/metabolism , Sex Characteristics , Supraoptic Nucleus/metabolism , Animals , Bile Ducts/surgery , Dehydroepiandrosterone/metabolism , Disease Models, Animal , Estradiol/blood , Female , Ligation , Male , Ovariectomy , Oxytocin/blood , Rats , Rats, Sprague-Dawley , Sex Factors , Testosterone/metabolism
14.
J Neurophysiol ; 124(2): 591-609, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32697679

ABSTRACT

Designer receptors exclusively activated by designer drugs (DREADDs) modify cellular activity following administration of the exogenous ligand clozapine-N-oxide (CNO). However, some reports indicate CNO may have off-target effects. The current studies investigate the use of Gq DREADDs in CaMKIIa-expressing neurons in the median preoptic nucleus (MnPO). Male Sprague-Dawley rats (250 g) anesthetized with isoflurane were stereotaxically microinjected in the MnPO with the Gq DREADD (AAV5-CaMKIIa-HM3D-mCherry) or control virus (AAV5-CaMKIIa-mCherry). Following a 2-wk recovery, rats were used for either immunohistochemical Fos analysis or in vitro patch-clamp electrophysiology. In Gq DREADD-injected rats, CNO induced significant increases in Fos staining in the MnPO and in regions that receive direct or indirect projections from the MnPO. In electrophysiological studies, CNO depolarized and augmented firing frequency in both Gq DREADD-positive neurons (Gq DREADD) as well as unlabeled MnPO neurons in slices from Gq DREADD-injected rats (Gq DREADDx). Gq DREADDx neurons also displayed increases in spontaneous postsynaptic current (sPSC) frequency in response to CNO. Additionally, CaMKIIa-positive MnPO neurons, which also express nitric oxide synthase (NOS), were treated with Nω-nitro-l-arginine (l-NNA; competitive inhibitor of NOS) and hemoglobin (NO scavenger) to assess the role of NO in Gq DREADDx neuron recruitment. Both l-NNA and hemoglobin blocked CNO-induced effects in Gq DREADDx neurons without affecting Gq DREADD neurons. These findings indicate that Gq DREADD-mediated activation of CaMKIIa/NOS expressing neurons in the MnPO can influence the activity of neighboring neurons. Future studies utilizing the use of Gq DREADDs will need to consider the potential recruitment of additional cell populations.NEW & NOTEWORTHY Rats were injected in the median preoptic nucleus (MnPO) with either an adeno-associated virus (AAV) and excitatory (Gq) designer receptor exclusively activated by designer drugs (DREADD) construct or a control AAV. In the Gq DREADD-injected rats only, clozapine-N-oxide (CNO) increased Fos staining in the MnPO and its targets and increased neuron action potential frequency. In electrophysiology experiments with slices with DREADD cells, unlabeled cells were activated and this was likely due to nitric oxide release by the DREADD cells.


Subject(s)
Action Potentials/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Neurons/metabolism , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide/metabolism , Preoptic Area/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Dependovirus , Designer Drugs , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Male , Rats, Sprague-Dawley
15.
Hypertension ; 75(4): 1002-1011, 2020 04.
Article in English | MEDLINE | ID: mdl-32148128

ABSTRACT

We have previously reported that in salt-resistant rat phenotypes brain, Gαi2 (guanine nucleotide-binding protein alpha inhibiting activity polypeptide 2) proteins are required to maintain blood pressure and sodium balance. However, the impact of hypothalamic paraventricular nucleus (PVN) Gαi2 proteins on the salt sensitivity of blood pressure is unknown. Here, by the bilateral PVN administration of a targeted Gαi2 oligodeoxynucleotide, we show that PVN-specific Gαi2 proteins are required to facilitate the full natriuretic response to an acute volume expansion (peak natriuresis [µeq/min] scrambled (SCR) oligodeoxynucleotide 41±3 versus Gαi2 oligodeoxynucleotide 18±4; P<0.05) via a renal nerve-dependent mechanism. Furthermore, in response to chronically elevated dietary sodium intake, PVN-specific Gαi2 proteins are essential to counter renal nerve-dependent salt-sensitive hypertension (mean arterial pressure [mm Hg] 8% NaCl; SCR oligodeoxynucleotide 128±2 versus Gαi2 oligodeoxynucleotide 147±3; P<0.05). This protective pathway involves activation of PVN Gαi2 signaling pathways, which mediate sympathoinhibition to the blood vessels and kidneys (renal norepinephrine [pg/mg] 8% NaCl; SCR oligodeoxynucleotide 375±39 versus Gαi2 oligodeoxynucleotide 850±27; P<0.05) and suppression of the activity of the sodium chloride cotransporter assessed as peak natriuresis to hydrochlorothiazide. Additionally, central oligodeoxynucleotide-mediated Gαi2 protein downregulation prevented PVN parvocellular neuron activation, assessed by FosB immunohistochemistry, in response to increased dietary salt intake. In our analysis of the UK BioBank data set, it was observed that 2 GNAI2 single nucleotide polymorphism (SNP) (rs2298952, P=0.041; rs4547694, P=0.017) significantly correlate with essential hypertension. Collectively, our data suggest that selective targeting and activation of PVN Gαi2 proteins is a novel therapeutic approach for the treatment of salt-sensitive hypertension.


Subject(s)
Blood Pressure/physiology , GTP-Binding Protein alpha Subunit, Gi2/metabolism , Hypertension/metabolism , Kidney/metabolism , Natriuresis/physiology , Paraventricular Hypothalamic Nucleus/metabolism , Sodium Chloride, Dietary , Animals , Male , Neural Pathways/physiology , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology
16.
Neuroendocrinology ; 110(7-8): 630-641, 2020.
Article in English | MEDLINE | ID: mdl-31557760

ABSTRACT

Hyponatremia due to elevated arginine vasopressin (AVP) secretion increases mortality in liver failure patients. The mechanisms causing dysregulation of AVP secretion are unknown. Our hypothesis is that inappropriate AVP release associated with liver failure is due to increased brain-derived neurotrophic factor (BDNF) in the supraoptic nucleus (SON). BDNF diminishes GABAA inhibition in SON AVP neurons by increasing intracellular chloride through tyrosine receptor kinase B (TrkB) activation and downregulation of K+/Cl- cotransporter 2 (KCC2). This loss of inhibition could increase AVP secretion. This hypothesis was tested using shRNA against BDNF (shBDNF) in the SON in bile duct ligated (BDL) male rats. All BDL rats had significantly increased liver weight (p < 0.05; 6-9) compared to shams. BDL rats with control -shRNA injections (BDL scrambled [SCR]) developed hyponatremia with increased plasma AVP and copeptin (CPP; all p < 0.05; 6-9) compared to sham groups. This is the first study to show that phosphorylation of TrkB is significantly increased along with significant decrease in phosphorylation of KCC2 in BDL SCR rats compared to the sham rats (p < 0.05;6-8). Knockdown of BDNF in the SON of BDL rats (BDL shBDNF) significantly increased plasma osmolality and hematocrit compared to BDL SCR rats (p < 0.05; 6-9). The BDL shBDNF rats had significant (p < 0.05; 6-9) decreases in plasma AVP and CPP concentration compared to BDL SCR rats. The BDNF knockdown also significantly blocked the increase in TrkB phosphorylation and decrease in KCC2 phosphorylation (p < 0.05; 6-8). The results indicate that BDNF produced in the SON contributes to increased AVP secretion and hyponatremia during liver failure.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Hyponatremia/metabolism , Neurons/metabolism , Supraoptic Nucleus/metabolism , Vasopressins/metabolism , Animals , Disease Models, Animal , Hyponatremia/pathology , Liver Failure/metabolism , Liver Failure/pathology , Male , Neurons/pathology , Rats , Supraoptic Nucleus/pathology
17.
Am J Physiol Heart Circ Physiol ; 318(1): H34-H48, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31675258

ABSTRACT

Obstructive sleep apnea is characterized by interrupted breathing that leads to cardiovascular sequelae including chronic hypertension that can persist into the waking hours. Chronic intermittent hypoxia (CIH), which models the hypoxemia associated with sleep apnea, is sufficient to cause a sustained increase in blood pressure that involves the central nervous system. The median preoptic nucleus (MnPO) is an integrative forebrain region that contributes to blood pressure regulation and neurogenic hypertension. The MnPO projects to the paraventricular nucleus (PVN), a preautonomic region. We hypothesized that pathway-specific lesions of the projection from the MnPO to the PVN would attenuate the sustained component of chronic intermittent hypoxia-induced hypertension. Adult male Sprague-Dawley rats (250-300 g) were anesthetized with isoflurane and stereotaxically injected bilaterally in the PVN with a retrograde Cre-containing adeno-associated virus (AAV; AAV9.CMV.HI.eGFP-Cre.WPRE.SV40) and injected in the MnPO with caspase-3 (AAV5-flex-taCasp3-TEVp) or control virus (AAV5-hSyn-DIO-mCherry). Three weeks after the injections the rats were exposed to a 7-day intermittent hypoxia protocol. During chronic intermittent hypoxia, controls developed a diurnal hypertension that was blunted in rats with caspase lesions. Brain tissue processed for FosB immunohistochemistry showed decreased staining with caspase-induced lesions of MnPO and downstream autonomic-regulating nuclei. Chronic intermittent hypoxia significantly increased plasma levels of advanced oxidative protein products in controls, but this increase was blocked in caspase-lesioned rats. The results indicate that PVN-projecting MnPO neurons play a significant role in blood pressure regulation in the development of persistent chronic intermittent hypoxia hypertension.NEW & NOTEWORTHY Chronic intermittent hypoxia associated with obstructive sleep apnea increases oxidative stress and leads to chronic hypertension. Sustained hypertension may be mediated by angiotensin II-induced neural plasticity of excitatory median preoptic neurons in the forebrain that project to the paraventricular nucleus of the hypothalamus. Selective caspase lesions of these neurons interrupt the drive for sustained hypertension and cause a reduction in circulating oxidative protein products. This indicates that a functional connection between the forebrain and hypothalamus is necessary to drive diurnal hypertension associated with intermittent hypoxia. These results provide new information about central mechanisms that may contribute to neurogenic hypertension.


Subject(s)
Apoptosis , Arterial Pressure , Caspase 3/metabolism , Hypertension/prevention & control , Hypoxia/complications , Paraventricular Hypothalamic Nucleus/enzymology , Preoptic Area/enzymology , Animals , Caspase 3/genetics , Circadian Rhythm , Disease Models, Animal , Heart Rate , Hypertension/enzymology , Hypertension/pathology , Hypertension/physiopathology , Hypoxia/enzymology , Hypoxia/pathology , Hypoxia/physiopathology , Male , Oxidative Stress , Paraventricular Hypothalamic Nucleus/pathology , Paraventricular Hypothalamic Nucleus/physiopathology , Preoptic Area/pathology , Preoptic Area/physiopathology , Proto-Oncogene Proteins c-fos/metabolism , Rats, Sprague-Dawley , Signal Transduction
18.
Sci Rep ; 9(1): 8820, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31217439

ABSTRACT

Neuropeptide release in the brain has traditionally been difficult to observe. Existing methods lack temporal and spatial resolution that is consistent with the function and size of neurons. We use cultured "sniffer cells" to improve the temporal and spatial resolution of observing neuropeptide release. Sniffer cells were created by stably transfecting Chinese Hamster Ovary (CHO) cells with plasmids encoding the rat angiotensin type 1a receptor and a genetically encoded Ca2+ sensor. Isolated, cultured sniffer cells showed dose-dependent increases in fluorescence in response to exogenously applied angiotensin II and III, but not other common neurotransmitters. Sniffer cells placed on the median preoptic nucleus (a presumptive site of angiotensin release) displayed spontaneous activity and evoked responses to either electrical or optogenetic stimulation of the subfornical organ. Stable sniffer cell lines could be a viable method for detecting neuropeptide release in vitro, while still being able to distinguish differences in neuropeptide concentration.


Subject(s)
Angiotensin II/metabolism , Neurons/metabolism , Animals , Brain/metabolism , CHO Cells , Cricetinae , Cricetulus , Fluorescence , Male , Optogenetics , Rats, Sprague-Dawley
19.
Exp Physiol ; 104(8): 1306-1323, 2019 08.
Article in English | MEDLINE | ID: mdl-31074108

ABSTRACT

NEW FINDINGS: What is the central question of this study? What are the differential roles of the mechanosensitive and chemosensitive afferent renal nerves in the reno-renal reflex that promotes natriuresis, sympathoinhibition and normotension during acute and chronic challenges to sodium homeostasis? What is the main finding and its importance? The mechanosensitive afferent renal nerves contribute to an acute natriuretic sympathoinhibitory reno-renal reflex that may be integrated within the paraventricular nucleus of the hypothalamus. Critically, the afferent renal nerves are required for the maintenance of salt resistance in Sprague-Dawley and Dahl salt-resistant rats and attenuate the development of Dahl salt-sensitive hypertension. ABSTRACT: These studies tested the hypothesis that in normotensive salt-resistant rat phenotypes the mechanosensitive afferent renal nerve (ARN) reno-renal reflex promotes natriuresis, sympathoinhibition and normotension during acute and chronic challenges to fluid and electrolyte homeostasis. Selective ARN ablation was conducted prior to (1) an acute isotonic volume expansion (VE) or 1 m NaCl infusion in Sprague-Dawley (SD) rats and (2) chronic high salt intake in SD, Dahl salt-resistant (DSR), and Dahl salt-sensitive (DSS) rats. ARN responsiveness following high salt intake was assessed ex vivo in response to noradrenaline and sodium concentration (SD, DSR and DSS) and via in vivo manipulation of renal pelvic pressure and sodium concentration (SD and DSS). ARN ablation attenuated the natriuretic and sympathoinhibitory responses to an acute VE [peak natriuresis (µeq min-1 ) sham 52 ± 5 vs. ARN ablation 28 ± 3, P < 0.05], but not a hypertonic saline infusion in SD rats. High salt (HS) intake enhanced ARN reno-renal reflex-mediated natriuresis in response to direct increases in renal pelvic pressure (mechanoreceptor stimulus) in vivo and ARN responsiveness to noradrenaline ex vivo in SD, but not DSS, rats. In vivo and ex vivo ARN responsiveness to increased renal pelvic sodium concentration (chemoreceptor stimulus) was unaltered during HS intake. ARN ablation evoked sympathetically mediated salt-sensitive hypertension in SD rats [MAP (mmHg): sham normal salt 102 ± 2 vs. sham HS 104 ± 2 vs. ARN ablation normal salt 103 ± 2 vs. ARN ablation HS 121 ± 2, P < 0.05] and DSR rats and exacerbated DSS hypertension. The mechanosensitive ARNs mediate an acute sympathoinhibitory natriuretic reflex and counter the development of salt-sensitive hypertension.


Subject(s)
Afferent Pathways/metabolism , Afferent Pathways/physiology , Blood Pressure/physiology , Homeostasis/physiology , Sodium/metabolism , Animals , Hypertension/metabolism , Hypertension/physiopathology , Kidney/metabolism , Kidney/physiology , Male , Natriuresis/physiology , Norepinephrine/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/physiology , Rats , Rats, Inbred Dahl , Rats, Sprague-Dawley , Sodium Chloride, Dietary/metabolism
20.
J Neuroendocrinol ; 31(8): e12752, 2019 08.
Article in English | MEDLINE | ID: mdl-31136029

ABSTRACT

Salt-loading (SL) impairs GABAA inhibition of arginine vasopressin (AVP) neurones in the supraoptic nucleus (SON) of the hypothalamus. Based on previous studies, we hypothesised that SL activates tyrosine receptor kinase B (TrkB), down-regulating the activity of K+ /Cl- co-transporter2 (KCC2) and up-regulating Na+ /K+ /Cl- co-transporter1 (NKCC1). These changes in chloride transport would result in increased [Cl- ]i in SON AVP neurones. The study combined virally-mediated chloride imaging with ClopHensorN with a single-cell western blot analysis. An adeno-associated virus with ClopHensorN and a vasopressin promoter (AAV2-0VP1-ClopHensorN) was bilaterally injected in the SON of adult male Sprague-Dawley rats that were either euhydrated (Eu) or salt-loaded (SL) for 7 days. Acutely dissociated SON neurones expressing ClopHensorN were tested for decreases or increases in [Cl- ]i in response to focal application of the GABAA agonist muscimol (100 µmol L-1 ). SON AVP neurones from Eu rats showed muscimol-induced chloride influx (P < 0.05;23/35). SON AVP neurones from SL rats either significantly increased chloride efflux (P < 0.05;27/39) or did not change chloride flux (12/39). The SON AVP neurones that responded to muscimol appeared to be viable and expressed KCC2 and ß-actin. Neurones that did not respond during chloride imaging did not show KCC2 and ß-actin protein expression. The KCC2 antagonist (VU0240551,10 µmol L-1 ) significantly blocked the chloride influx in cells from Eu rats but did not affect cells from SL rats. A NKCC1 antagonist (bumetanide,10 µmol L-1 ) significantly blocked the chloride efflux in cells from SL rats but had no effect on cells from Eu rats. Blocking NKCC1 using bumetanide had less of an effect on the muscimol-induced Cl- influx in Eu rat neurones compared to the KCC2 antagonist. The TrkB antagonist (AnA-12) (50 µmol L-1 ) and protein kinase inhibitor (K252a) (100 nmol L-1 ) each significantly blocked chloride efflux in SON AVP neurones from SL rats. Salt-loading increases [Cl- ]i in SON AVP neurones via a TrKB-KCC2-NKCC1-dependent mechanism in rats.


Subject(s)
Arginine Vasopressin/metabolism , Neurons/drug effects , Sodium Chloride/pharmacology , Supraoptic Nucleus/drug effects , Animals , Arginine Vasopressin/genetics , Biosensing Techniques , Dose-Response Relationship, Drug , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Immunohistochemistry/methods , Male , Neurons/cytology , Neurons/metabolism , Optical Imaging/methods , Promoter Regions, Genetic , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Supraoptic Nucleus/diagnostic imaging , Supraoptic Nucleus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...